文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.

作者信息

Liu Xiaoli, Zhang Yifan, Wang Yanyun, Zhu Wenjing, Li Galong, Ma Xiaowei, Zhang Yihan, Chen Shizhu, Tiwari Shivani, Shi Kejian, Zhang Shouwen, Fan Hai Ming, Zhao Yong Xiang, Liang Xing-Jie

机构信息

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; School of Medicine, Northwest University, Xi'an 710069, China.

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Theranostics. 2020 Feb 19;10(8):3793-3815. doi: 10.7150/thno.40805. eCollection 2020.


DOI:10.7150/thno.40805
PMID:32206123
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7069093/
Abstract

Magnetic hyperthermia (MH) has been introduced clinically as an alternative approach for the focal treatment of tumors. MH utilizes the heat generated by the magnetic nanoparticles (MNPs) when subjected to an alternating magnetic field (AMF). It has become an important topic in the nanomedical field due to their multitudes of advantages towards effective antitumor therapy such as high biosafety, deep tissue penetration, and targeted selective tumor killing. However, in order for MH to progress and to realize its paramount potential as an alternative choice for cancer treatment, tremendous challenges have to be overcome. Thus, the efficiency of MH therapy needs enhancement. In its recent 60-year of history, the field of MH has focused primarily on heating using MNPs for therapeutic applications. Increasing the thermal conversion efficiency of MNPs is the fundamental strategy for improving therapeutic efficacy. Recently, emerging experimental evidence indicates that MNPs-MH produces nano-scale heat effects without macroscopic temperature rise. A deep understanding of the effect of this localized induction heat for the destruction of subcellular/cellular structures further supports the efficacy of MH in improving therapeutic therapy. In this review, the currently available strategies for improving the antitumor therapeutic efficacy of MNPs-MH will be discussed. Firstly, the recent advancements in engineering MNP size, composition, shape, and surface to significantly improve their energy dissipation rates will be explored. Secondly, the latest studies depicting the effect of local induction heat for selectively disrupting cells/intracellular structures will be examined. Thirdly, strategies to enhance the therapeutics by combining MH therapy with chemotherapy, radiotherapy, immunotherapy, photothermal/photodynamic therapy (PDT), and gene therapy will be reviewed. Lastly, the prospect and significant challenges in MH-based antitumor therapy will be discussed. This review is to provide a comprehensive understanding of MH for improving antitumor therapeutic efficacy, which would be of utmost benefit towards guiding the users and for the future development of MNPs-MH towards successful application in medicine.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/14d5663bcd0c/thnov10p3793g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/de13fd436232/thnov10p3793g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/e13b99cfc2dd/thnov10p3793g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/3a086084573d/thnov10p3793g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/49f13238e715/thnov10p3793g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/ba4e18dda99f/thnov10p3793g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/de5f5ac18d4f/thnov10p3793g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/7e04561a38b9/thnov10p3793g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/4425f94499c8/thnov10p3793g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/19476f097c13/thnov10p3793g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/fd29d94cd0de/thnov10p3793g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/14d5663bcd0c/thnov10p3793g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/de13fd436232/thnov10p3793g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/e13b99cfc2dd/thnov10p3793g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/3a086084573d/thnov10p3793g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/49f13238e715/thnov10p3793g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/ba4e18dda99f/thnov10p3793g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/de5f5ac18d4f/thnov10p3793g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/7e04561a38b9/thnov10p3793g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/4425f94499c8/thnov10p3793g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/19476f097c13/thnov10p3793g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/fd29d94cd0de/thnov10p3793g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df98/7069093/14d5663bcd0c/thnov10p3793g011.jpg

相似文献

[1]
Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.

Theranostics. 2020-2-19

[2]
Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography.

Theranostics. 2021-3-23

[3]
A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges.

J Therm Biol. 2020-7

[4]
Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy: An approach towards enhanced attenuation of tumor.

Mater Sci Eng C Mater Biol Appl. 2020-1-28

[5]
Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.

Int J Mol Sci. 2020-7-22

[6]
A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.

Comput Methods Programs Biomed. 2023-6

[7]
Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.

Nanotechnology. 2011-11-23

[8]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[9]
FeO@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells.

Int J Nanomedicine. 2018-4-23

[10]
Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment.

Cell Death Dis. 2013-4-18

引用本文的文献

[1]
Magnetic activation of spherical nucleic acids enables the remote control of synthetic cells.

Nat Chem. 2025-9-2

[2]
Magnetic hyperthermia-based therapies for cancer targeting: current progress and future perspectives.

Med Oncol. 2025-8-28

[3]
Evaluation of CoFeO-L-Au (L: Citrate, Glycine) as Superparamagnetic-Plasmonic Nanocomposites for Enhanced Cytotoxic Activity Towards Oncogenic (A549) Cells.

Int J Mol Sci. 2025-8-10

[4]
Precision-Engineered Cobalt-doped Iron Oxide Nanoparticles: From Octahedron Seeds to Cubical Bipyramids for Enhanced Magnetic Hyperthermia.

Adv Funct Mater. 2025-3-17

[5]
Heat up, silence on: IDO1 gene silencing in THP-1-derived dendritic cells triggered by magnetic hyperthermia.

Cancer Immunol Immunother. 2025-8-23

[6]
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

Bioact Mater. 2025-7-26

[7]
Green-synthesized metal nanoparticles: a promising approach for accelerated wound healing.

Front Bioeng Biotechnol. 2025-7-16

[8]
Thermoregulable Magnetic Microfluidic Devices by Magnetic Hyperthermia from Iron Oxide Nanoparticles.

ACS Appl Nano Mater. 2025-7-11

[9]
Influence of the pH Synthesis of FeO Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis.

Pharmaceutics. 2025-6-27

[10]
Recent Progress of Nanomedicine for the Synergetic Treatment of Radiotherapy (RT) and Photothermal Treatment (PTT).

Cancers (Basel). 2025-7-10

本文引用的文献

[1]
Effective Cancer Theranostics with Polymer Encapsulated Superparamagnetic Nanoparticles: Combined Effects of Magnetic Hyperthermia and Controlled Drug Release.

ACS Biomater Sci Eng. 2017-7-10

[2]
Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents.

J Mater Chem B. 2014-1-7

[3]
AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer.

J Mater Chem B. 2018-4-21

[4]
Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Anti-Metastatic Immunotherapy.

Adv Sci (Weinh). 2019-9-12

[5]
Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.

Nanoscale. 2019-8-28

[6]
Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process.

ACS Omega. 2017-10-26

[7]
Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents.

Small. 2019-8-27

[8]
Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis.

ACS Nano. 2019-7-25

[9]
GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance.

ACS Appl Mater Interfaces. 2019-6-26

[10]
Ultrasonication-Triggered Ubiquitous Assembly of Magnetic Janus Amphiphilic Nanoparticles in Cancer Theranostic Applications.

Nano Lett. 2019-6-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索