文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Carboxylated PEG-Functionalized MnFeO Nanocubes Synthesized in a Mixed Solvent: Morphology, Magnetic Properties, and Biomedical Applications.

作者信息

Kalaiselvan Chandunika R, Thorat Nanasaheb D, Sahu Niroj Kumar

机构信息

Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.

Medical Science Division, Nuffield Department of Women's & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, U.K.

出版信息

ACS Omega. 2021 Feb 18;6(8):5266-5275. doi: 10.1021/acsomega.0c05382. eCollection 2021 Mar 2.


DOI:10.1021/acsomega.0c05382
PMID:33681567
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7931194/
Abstract

Ferrites are one of the most studied materials around the globe due to their distinctive biological and magnetic properties. In the same line, anisotropic MnFeO nanoparticles have been explored as a potential candidate possessing excellent magnetic properties, biocompatibility, and strong magnetic resonance imaging (MRI) properties such as 2 relaxivity for magnetic field-guided biomedical applications. The current work reports the synthesis and morphological evolution of MnFeO nanocubes (MNCs) in a hydrothermal process using different volume ratios of water and ethanol. The synthesis protocol was designed to influence the properties of the ferrite nanocubes, for example, the variation in surface tension, dielectric properties, and the ionic character of the solvent, and this has been achieved by adding ethanol into water during the synthesis. Pristine MnFeO is formed with well-defined cubic to irregular cubic shapes with the addition of ethanol, as evidenced from XRD, field emission scanning electron microscopy, and porosity measurements. MNCs have been investigated for magnetic hyperthermia and MRI applications. Well-defined cubic-shaped MNCs with uniform size distribution possessed a high saturation magnetization of 63 emu g and a transverse relaxivity (2) of 216 mM s (Mn + Fe). Furthermore, the colloidal nanocubes showed concentration-dependent hyperthermic response under an alternating magnetic field. The MNCs are biocompatible but advantageously show anticancer activities on breast cancer MCF 7 and MDA-MB-231 cells.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/4303a3a82b4d/ao0c05382_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/fd003ed31888/ao0c05382_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/b2112093be75/ao0c05382_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/766903ef4e45/ao0c05382_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/f98adc21e2d9/ao0c05382_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/97f14e06f541/ao0c05382_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/4426423fdb9f/ao0c05382_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/4303a3a82b4d/ao0c05382_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/fd003ed31888/ao0c05382_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/b2112093be75/ao0c05382_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/766903ef4e45/ao0c05382_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/f98adc21e2d9/ao0c05382_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/97f14e06f541/ao0c05382_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/4426423fdb9f/ao0c05382_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6237/7931194/4303a3a82b4d/ao0c05382_0008.jpg

相似文献

[1]
Carboxylated PEG-Functionalized MnFeO Nanocubes Synthesized in a Mixed Solvent: Morphology, Magnetic Properties, and Biomedical Applications.

ACS Omega. 2021-2-18

[2]
High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics.

Biomaterials. 2014-8-5

[3]
Reducing the inversion degree of MnFe2O4 nanoparticles through synthesis to enhance magnetization: evaluation of their (1)H NMR relaxation and heating efficiency.

Dalton Trans. 2014-9-7

[4]
Magnetic colloidal superparticles of Co, Mn and Ni ferrite featured with comb-type and/or linear amphiphilic polyelectrolytes; NMR and MRI relaxometry.

Dalton Trans. 2015-6-28

[5]
Manganese Ferrite Nanoparticles (MnFeO): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI.

Nanomaterials (Basel). 2020-11-20

[6]
Impact of Gd doping on structural, electronic, magnetic, and photocatalytic properties of MnFeO nanoferrites and application in dye-polluted wastewater remediation.

Environ Sci Pollut Res Int. 2023-2

[7]
Engineered Polyethylene Glycol-Coated Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent.

ACS Biomater Sci Eng. 2023-7-10

[8]
Effect of Europium Substitution on the Structural, Magnetic and Relaxivity Properties of Mn-Zn Ferrite Nanoparticles: A Dual-Mode MRI Contrast-Agent Candidate.

Nanomaterials (Basel). 2023-1-12

[9]
Dextran mediated MnFeO/ZnS magnetic fluorescence nanocomposites for controlled self-heating properties.

RSC Adv. 2021-3-30

[10]
Bi-Magnetic Core-Shell CoFeO@MnFeO Nanoparticles for In Vivo Theranostics.

Nanomaterials (Basel). 2020-5-8

引用本文的文献

[1]
Investigation and optimization of DNA isolation efficiency using ferrite-based magnetic nanoparticles.

Biotechnol Rep (Amst). 2025-6-30

[2]
Simplified Synthesis of the Amine-Functionalized Magnesium Ferrite Magnetic Nanoparticles and Their Application in DNA Purification Method.

Int J Mol Sci. 2023-9-16

[3]
Engineered Polyethylene Glycol-Coated Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent.

ACS Biomater Sci Eng. 2023-7-10

[4]
Optimisation of the Flame Spheroidisation Process for the Rapid Manufacture of FeO-Based Porous and Dense Microspheres.

Molecules. 2023-3-9

[5]
A Simplified and Efficient Method for Production of Manganese Ferrite Magnetic Nanoparticles and Their Application in DNA Isolation.

Int J Mol Sci. 2023-1-21

[6]
Design and Development of Gold-Loaded and Boron-Attached Multicore Manganese Ferrite Nanoparticles as a Potential Agent in Biomedical Applications.

ACS Omega. 2022-6-3

[7]
Facile Synthesis, Static, and Dynamic Magnetic Characteristics of Varying Size Double-Surfactant-Coated Mesoscopic Magnetic Nanoparticles Dispersed Stable Aqueous Magnetic Fluids.

Nanomaterials (Basel). 2021-11-9

本文引用的文献

[1]
MRI Guided Magneto-chemotherapy with High-Magnetic-Moment Iron Oxide Nanoparticles for Cancer Theranostics.

ACS Appl Bio Mater. 2020-4-20

[2]
Synthesis of manganese doped β-FeOOH and MnFeO nanorods for enhanced drug delivery and hyperthermia application.

IET Nanobiotechnol. 2020-12

[3]
In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents.

J Mater Chem B. 2014-12-21

[4]
Surface Study of FeO Nanoparticles Functionalized With Biocompatible Adsorbed Molecules.

Front Chem. 2019-10-4

[5]
Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.

Int J Hyperthermia. 2019

[6]
Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis.

Sci Rep. 2019-2-6

[7]
Iron and magnetic: new research direction of the ferroptosis-based cancer therapy.

Am J Cancer Res. 2018-10-1

[8]
Unravelling the Thermal Decomposition Parameters for The Synthesis of Anisotropic Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2018-10-29

[9]
Novel magneto-responsive nanoplatforms based on MnFeO nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin.

Mater Sci Eng C Mater Biol Appl. 2018-6-19

[10]
Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles.

Biochem Biophys Rep. 2018-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索