de Crane D'Heysselaer Simon, Parisi Gianni, Lisson Maxime, Bruyère Olivier, Donneau Anne-Françoise, Fontaine Sebastien, Gillet Laurent, Bureau Fabrice, Darcis Gilles, Thiry Etienne, Ducatez Mariette, Snoeck Chantal J, Zientara Stéphan, Haddad Nadia, Humblet Marie-France, Ludwig-Begall Louisa F, Daube Georges, Thiry Damien, Misset Benoît, Lambermont Bernard, Tandjaoui-Lambiotte Yacine, Zahar Jean-Raph, Sartor Kevin, Noël Catherine, Saegerman Claude, Haubruge Eric
TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiege), FARAH Research Centre, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium.
Pathogens. 2023 Feb 27;12(3):382. doi: 10.3390/pathogens12030382.
The COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been plaguing the world since late 2019/early 2020 and has changed the way we function as a society, halting both economic and social activities worldwide. Classrooms, offices, restaurants, public transport, and other enclosed spaces that typically gather large groups of people indoors, and are considered focal points for the spread of the virus. For society to be able to go "back to normal", it is crucial to keep these places open and functioning. An understanding of the transmission modes occurring in these contexts is essential to set up effective infection control strategies. This understanding was made using a systematic review, according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA) 2020 guidelines. We analyze the different parameters influencing airborne transmission indoors, the mathematical models proposed to understand it, and discuss how we can act on these parameters. Methods to judge infection risks through the analysis of the indoor air quality are described. Various mitigation measures are listed, and their efficiency, feasibility, and acceptability are ranked by a panel of experts in the field. Thus, effective ventilation procedures controlled by CO-monitoring, continued mask wearing, and a strategic control of room occupancy, among other measures, are put forth to enable a safe return to these essential places.
由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发的新冠疫情自2019年末/2020年初以来一直困扰着全球,改变了我们作为一个社会的运转方式,使全球的经济和社会活动陷入停滞。教室、办公室、餐厅、公共交通以及其他通常会聚集大量人群的室内封闭空间,被视为病毒传播的重点场所。为了让社会能够“恢复正常”,保持这些场所的开放和正常运转至关重要。了解这些环境中的传播模式对于制定有效的感染控制策略至关重要。根据系统评价和Meta分析的首选报告项目声明(PRISMA)2020指南,通过系统评价得出了这一认识。我们分析了影响室内空气传播的不同参数、为理解该传播模式而提出的数学模型,并讨论了我们如何对这些参数采取行动。描述了通过分析室内空气质量来判断感染风险的方法。列出了各种缓解措施,并由该领域的专家小组对其有效性、可行性和可接受性进行了排序。因此,提出了通过一氧化碳监测控制有效通风程序、持续佩戴口罩以及对房间 occupancy 进行战略控制等措施,以实现安全返回这些重要场所。 (注:原文中“room occupancy”表述不太准确,可能是“room occupancy rate”房间占用率之类的意思,但按要求未作修改翻译)