Wise Allison L, LaFrentz Benjamin R, Kelly Anita M, Liles Mark R, Griffin Matt J, Beck Benjamin H, Bruce Timothy J
School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36849, USA.
USDA-ARS Aquatic Animal Health Research Unit, Auburn, AL 36832, USA.
Pathogens. 2023 Mar 15;12(3):462. doi: 10.3390/pathogens12030462.
and are pervasive bacterial pathogens associated with significant losses in catfish aquaculture. Bacterial coinfections have the potential to increase outbreak severity and can worsen on-farm mortality. A preliminary assessment of in vivo bacterial coinfection with (S97-773) and (ALG-00-530) was conducted using juvenile channel catfish (). Catfish were divided into five treatment groups: (1) mock control; (2) full dose (immersion; 5.4 × 10 CFU mL); (3) full dose (immersion; 3.6 × 10 CFU mL); (4) half dose (immersion; 2.7 × 10 CFU mL) followed by half dose (immersion; 1.8 × 10 CFU mL); and (5) half dose followed by half dose . In the coinfection challenges, the second inoculum was delivered 48 h after the initial exposure. At 21 days post-challenge (DPC), the single dose infection yielded a cumulative percent mortality (CPM) of 90.0 ± 4.1%, compared with 13.3 ± 5.9% in the group. Mortality patterns in coinfection challenges mimicked the single dose challenge, with CPM of 93.3 ± 5.4% for fish initially challenged with followed by , and 93.3 ± 2.7% for fish exposed to and subsequently challenged with . Despite similarities in the final CPM within the coinfection groups, the onset of peak mortality was delayed in fish exposed to first but was congruent with mortality trends in the challenge. Catfish exposed to in both the single and coinfected treatments displayed increased serum lysozyme activity at 4-DPC ( < 0.001). Three pro-inflammatory cytokines (, , ) were evaluated for gene expression, revealing an increase in expression at 7-DPC in all exposed treatments ( < 0.05). These data enhance our understanding of the dynamics of and coinfections in US farm-raised catfish.
[细菌名称1]和[细菌名称2]是普遍存在的细菌病原体,与鲶鱼养殖中的重大损失相关。细菌混合感染有可能增加疫情的严重程度,并会使养殖场的死亡率恶化。使用幼年斑点叉尾鮰([鮰鱼品种名称])对[细菌名称1](S97 - 773)和[细菌名称2](ALG - 00 - 530)的体内细菌混合感染进行了初步评估。鲶鱼被分为五个处理组:(1)模拟对照组;(2)[细菌名称1]全剂量组(浸浴;5.4×10[细菌数量单位] CFU/mL);(3)[细菌名称2]全剂量组(浸浴;3.6×10[细菌数量单位] CFU/mL);(4)[细菌名称1]半剂量组(浸浴;2.7×10[细菌数量单位] CFU/mL),随后是[细菌名称2]半剂量组(浸浴;1.8×10[细菌数量单位] CFU/mL);以及(5)[细菌名称2]半剂量组,随后是[细菌名称1]半剂量组。在混合感染挑战中,第二次接种在初次暴露后48小时进行。在攻毒后21天(DPC),单剂量[细菌名称1]感染产生的累积死亡率(CPM)为90.0±4.1%,而[细菌名称2]组为13.3±5.9%。混合感染挑战中的死亡率模式模仿了单剂量[细菌名称1]挑战,先接受[细菌名称1]攻毒随后接受[细菌名称2]攻毒的鱼的CPM为93.3±5.4%,先接受[细菌名称2]攻毒随后接受[细菌名称1]攻毒的鱼的CPM为93.3±2.7%。尽管混合感染组内最终CPM相似,但先接触[细菌名称1]的鱼的死亡高峰出现延迟,但与[细菌名称1]挑战中的死亡率趋势一致。在单感染和混合感染处理中接触[细菌名称1]的鲶鱼在攻毒后4天(DPC)时血清溶菌酶活性增加(P < 0.001)。评估了三种促炎细胞因子([细胞因子名称1]、[细胞因子名称2]、[细胞因子名称3])的基因表达,发现在所有接触[细菌名称1]的处理中攻毒后7天(DPC)时表达增加(P < 0.05)。这些数据增进了我们对美国养殖鲶鱼中[细菌名称1]和[细菌名称2]混合感染动态的理解。