Suppr超能文献

与石化替代品相比,家庭可堆肥生物聚合物纤维的性能谱

Performance Spectrum of Home-Compostable Biopolymer Fibers Compared to a Petrochemical Alternative.

作者信息

Schick Simon, Groten Robert, Seide Gunnar H

机构信息

Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.

Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Mönchengladbach, Webschulstrasse 31, 41065 Mönchengladbach, Germany.

出版信息

Polymers (Basel). 2023 Mar 9;15(6):1372. doi: 10.3390/polym15061372.

Abstract

Manufacturers of technical polymers must increasingly consider the degradability of their products due to the growing public interest in topics such as greenhouse gas emissions and microplastic pollution. Biobased polymers are part of the solution, but they are still more expensive and less well characterized than conventional petrochemical polymers. Therefore, few biobased polymers with technical applications have reached the market. Polylactic acid (PLA) is the most widely-used industrial thermoplastic biopolymer and is mainly found in the areas of packaging and single-use products. It is classed as biodegradable but only breaks down efficiently above the glass transition temperature of ~60 °C, so it persists in the environment. Some commercially available biobased polymers can break down under normal environmental conditions, including polybutylene succinate (PBS), polybutylene adipate terephthalate (PBAT) and thermoplastic starch (TPS), but they are used far less than PLA. This article compares polypropylene, a petrochemical polymer and benchmark for technical applications, with the commercially available biobased polymers PBS, PBAT and TPS, all of which are home-compostable. The comparison considers processing (using the same spinning equipment to generate comparable data) and utilization. Draw ratios ranged from 29 to 83, with take-up speeds from 450 to 1000 m/min. PP achieved benchmark tenacities over 50 cN/tex with these settings, while PBS and PBAT achieved over 10cN/tex. By comparing the performance of biopolymers to petrochemical polymers in the same melt-spinning setting, it is easier to decide which polymer to use in a particular application. This study shows the possibility that home-compostable biopolymers are suitable for products with lower mechanical properties. Only spinning the materials on the same machine with the same settings produces comparable data. This research, therefore, fills the niche and provides comparable data. To our knowledge, this report is the first direct comparison of polypropylene and biobased polymers in the same spinning process with the same parameter settings.

摘要

由于公众对温室气体排放和微塑料污染等话题的关注度不断提高,工程聚合物制造商越来越需要考虑其产品的可降解性。生物基聚合物是解决方案的一部分,但与传统石化聚合物相比,它们仍然更昂贵且特性研究较少。因此,很少有具有技术应用的生物基聚合物进入市场。聚乳酸(PLA)是应用最广泛的工业热塑性生物聚合物,主要用于包装和一次性产品领域。它被归类为可生物降解,但仅在约60°C的玻璃化转变温度以上才能有效分解,因此它会在环境中持续存在。一些市售的生物基聚合物可以在正常环境条件下分解,包括聚丁二酸丁二醇酯(PBS)、聚己二酸对苯二甲酸丁二醇酯(PBAT)和热塑性淀粉(TPS),但它们的使用量远低于PLA。本文将石化聚合物聚丙烯(技术应用的基准材料)与市售的可家庭堆肥的生物基聚合物PBS、PBAT和TPS进行了比较。该比较考虑了加工过程(使用相同的纺丝设备以生成可比数据)和应用情况。拉伸比范围为29至83,卷取速度为450至1000米/分钟。在这些设置下,PP达到了超过50厘牛/特克斯的基准强度,而PBS和PBAT达到了超过10厘牛/特克斯。通过在相同的熔体纺丝条件下比较生物聚合物与石化聚合物的性能,更容易决定在特定应用中使用哪种聚合物。这项研究表明,可家庭堆肥的生物聚合物适用于机械性能较低的产品。只有在同一台机器上以相同设置纺丝这些材料才能产生可比数据。因此,本研究填补了这一空白并提供了可比数据。据我们所知,本报告是首次在相同纺丝过程中以相同参数设置对聚丙烯和生物基聚合物进行直接比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb82/10056001/aecdf9d38d3f/polymers-15-01372-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验