CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
Environ Sci Technol. 2023 Apr 11;57(14):5891-5902. doi: 10.1021/acs.est.2c08220. Epub 2023 Mar 29.
This study employs stable isotope analysis to investigate the mechanisms of cadmium (Cd) and zinc (Zn) interaction in the metal hyperaccumulating plant species . To this end, the Cd and Zn isotope compositions of root, stem, leaf, and xylem sap samples were determined during metal uptake and translocation at different Cd and Zn concentrations. The enrichment of light isotopes of both elements in plants during uptake was less pronounced at low metal supply levels, likely reflecting the switch from a low-affinity to a high-affinity transport system at lower levels of external metal supply. The lower δCd values of xylem sap when treated with a metabolic inhibitor decreasing the active Cd uptake further supports the preference of heavier Cd isotopes during high-affinity transport. The ΔZn or ΔZn values were similar at different Cd concentrations, indicating negligible interaction of Cd in the Zn uptake process. However, decreasing Zn supply levels significantly increased the enrichment of light Cd isotopes in plants (ΔCd = -0.08‰) in low-Cd treatments but reduced the enrichment of light Cd isotopes in plants (ΔCd = 0.08‰) under high Cd conditions. A systematic enrichment of heavy Cd and light Zn isotopes was found in root-to-shoot translocation of the metals. The Cd concentrations of the growth solutions thereby had no significant impact on Zn isotope fractionation during root-to-shoot translocation. However, the ΔCd values hint at possible competition between Cd and Zn for transporters during root-to-shoot transfer and this may impact the transport pathway of Cd. The stable isotope data demonstrate that the interactions between the two metals influenced the uptake and transport mechanisms of Cd in but had little effect on those of Zn.
本研究采用稳定同位素分析方法,研究了重金属超积累植物物种中镉(Cd)和锌(Zn)相互作用的机制。为此,在不同 Cd 和 Zn 浓度下,测定了植物吸收和转运过程中根、茎、叶和木质部汁液样品中 Cd 和 Zn 的同位素组成。在低金属供应水平下,元素轻同位素在植物中的富集程度较低,这可能反映了在较低的外部金属供应水平下,从低亲和力转运系统向高亲和力转运系统的转变。代谢抑制剂处理降低主动 Cd 吸收后,木质部汁液中 δCd 值进一步降低,这进一步支持了在高亲和力转运过程中重 Cd 同位素的偏好。不同 Cd 浓度下的 ΔZn 或 ΔZn 值相似,表明 Cd 在 Zn 吸收过程中几乎没有相互作用。然而,降低 Zn 供应水平会显著增加植物中轻 Cd 同位素的富集(ΔCd = -0.08‰),而在低 Cd 条件下则会降低植物中轻 Cd 同位素的富集(ΔCd = 0.08‰)。在金属的根到茎的转运过程中,发现重 Cd 和轻 Zn 同位素系统富集。生长溶液中的 Cd 浓度对根到茎的转运过程中 Zn 同位素分馏没有显著影响。然而,ΔCd 值暗示了 Cd 和 Zn 之间可能在根到茎的转移过程中存在对转运体的竞争,这可能会影响 Cd 的运输途径。稳定同位素数据表明,两种金属之间的相互作用影响了 中 Cd 的吸收和转运机制,但对 Zn 的吸收和转运机制影响较小。