CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
University of the Chinese Academy of Sciences, Beijing 100049, China.
Environ Sci Technol. 2020 Nov 3;54(21):13598-13609. doi: 10.1021/acs.est.0c03142. Epub 2020 Oct 20.
Analysis of stable metal isotopes can provide important information on biogeochemical processes in the soil-plant system. Here, we conducted a repeated phytoextraction experiment using the cadmium (Cd) hyperaccumulator X. H. Guo et S. B. Zhou ex L. H. Wu (Crassulaceae) in four different Cd-contaminated agricultural soils over five consecutive crops. Isotope composition of Cd was determined in the four soils before and after the fifth crop, in the plant shoots harvested in all soils in the first crop, and in the NHOAc extracts of two contrasting soils with large differences in soil pH (5.73 and 7.32) and clay content (20.4 and 31.3%) before and after repeated phytoextraction. Before phytoextraction NHOAc-extractable Cd showed a slight but significant negative isotope fractionation or no fractionation compared with total Cd (ΔCd = -0.15 ± 0.05 (mean ± standard error) and 0.01 ± 0.01‰), and the extent of fractionation varied with soil pH and clay content. preferentially took up heavy Cd from soils (ΔCd = 0.02-0.14‰), and heavy isotopes were significantly depleted in two soils after repeated phytoextraction (ΔCd = -0.15 ± 0.02 and -0.12 ± 0.01‰). This provides evidence for the existence of specific Cd transporters in , leading to positive isotope fractionation during uptake. After phytoextraction by five sequential crops, the NHOAc-extractable Cd pool was significantly enriched in heavy isotopes (ΔCd = 0.07 ± 0.02 and 0.18 ± 0.05‰) despite the preferential uptake of heavy isotopes, indicating the occurrence of root-induced Cd mobilization in soils, which is supposed to favor heavy Cd in the organo-complexes with root exudates. Our results demonstrate that Cd is taken up by via specific transporters, partly after active mobilization from the more strongly bound soil pool such as iron/manganese (hydr)oxide-bound Cd during repeated phytoextraction. This renders a suitable plant for large-scale field phytoremediation.
稳定金属同位素分析可为土壤-植物系统中的生物地球化学过程提供重要信息。在这里,我们使用超积累植物 X. H. Guo 等(景天科)在四种不同 Cd 污染农业土壤中进行了五次连续作物的重复植物提取实验。在第五次作物后,测定了四种土壤中 Cd 的同位素组成,在所有土壤中第一次作物收获的植物地上部分中测定了 Cd 的同位素组成,在两种土壤的 NHOAc 提取物中进行了测定,这两种土壤的土壤 pH(5.73 和 7.32)和粘土含量(20.4%和 31.3%)差异很大。在重复植物提取之前和之后。在植物提取之前,NHOAc 可提取的 Cd 与总 Cd 相比表现出轻微但显著的负同位素分馏或不分馏(ΔCd = -0.15 ± 0.05(均值±标准误差)和 0.01 ± 0.01‰),分馏程度随土壤 pH 和粘粒含量而变化。优先从土壤中吸收重 Cd(ΔCd = 0.02-0.14‰),在重复植物提取后,两种土壤中重同位素明显耗尽(ΔCd = -0.15 ± 0.02 和 -0.12 ± 0.01‰)。这为 在吸收过程中存在特定的 Cd 转运蛋白提供了证据,导致吸收过程中的正同位素分馏。经过五次连续作物的植物提取后,尽管优先吸收重同位素,但 NHOAc 可提取的 Cd 库在重同位素中显著富集(ΔCd = 0.07 ± 0.02 和 0.18 ± 0.05‰),这表明土壤中发生了根诱导的 Cd 迁移,这有利于根分泌物与有机络合物中的重 Cd。我们的结果表明,Cd 通过特定的转运蛋白被吸收,部分是在重复植物提取过程中,从更紧密结合的土壤库(如铁/锰(氢)氧化物结合的 Cd)中主动动员之后。这使得 成为大规模田间植物修复的合适植物。