Suppr超能文献

磷酸化稳定的 TET1 作为 B 细胞急性淋巴细胞白血病的癌蛋白和治疗靶点。

Phosphorylation stabilized TET1 acts as an oncoprotein and therapeutic target in B cell acute lymphoblastic leukemia.

机构信息

Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.

Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

出版信息

Sci Transl Med. 2023 Mar 29;15(689):eabq8513. doi: 10.1126/scitranslmed.abq8513.

Abstract

Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of and and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.

摘要

尽管儿童 B 细胞急性淋巴细胞白血病 (B-ALL) 的总体存活率超过 80%,但难治/复发和成人 B-ALL 患者的存活率仅为 30%。这表明需要针对这组 B-ALL 患者改进治疗方法。在这里,我们表明,参与 DNA 去甲基化的双加氧酶 ten-eleven translocation 1 (TET1) 蛋白在 B-ALL 中过度表达并发挥关键致癌作用,而与其催化活性无关。与 TET1 在 B-ALL 中的致癌作用一致,单独在正常前体 B 细胞中过表达 TET1 足以在 3 至 4 个月内在小鼠中转化细胞并引起 B-ALL。我们发现 TET1 蛋白因蛋白激酶 C ɛ (PRKCE) 和 ATM 丝氨酸/苏氨酸激酶 (ATM) 介导的磷酸化而稳定和过度表达,这两种激酶在 B-ALL 中也过度表达。在机制上,TET1 将 STAT5B 募集到 和 的启动子,并促进其转录,进而促进 B-ALL 的发展。用 PKC 或 ATM 抑制剂(均在临床试验中进行了测试,即 staurosporine 或 AZD0156)或通过 STAT5B 的药理学靶向来稳定化 TET1 蛋白,可大大降低 B-ALL 细胞活力并抑制体外和体内 B-ALL 的进展。AZD0156 与 staurosporine 或长春新碱联合使用对抑制 PDX 模型中难治/复发 B-ALL 细胞存活和白血病进展具有协同作用。总之,我们的研究揭示了磷酸化 TET1 蛋白在 B-ALL 中的致癌作用,独立于其催化活性,并强调了靶向 TET1 信号转导治疗难治/复发 B-ALL 的治疗潜力。

相似文献

1
Phosphorylation stabilized TET1 acts as an oncoprotein and therapeutic target in B cell acute lymphoblastic leukemia.
Sci Transl Med. 2023 Mar 29;15(689):eabq8513. doi: 10.1126/scitranslmed.abq8513.
2
TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition.
Leukemia. 2021 Feb;35(2):389-403. doi: 10.1038/s41375-020-0864-3. Epub 2020 May 15.
3
TET1 plays an essential oncogenic role in MLL-rearranged leukemia.
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11994-9. doi: 10.1073/pnas.1310656110. Epub 2013 Jul 1.
4
Identification of MLL-fusion/MYC⊣miR-26⊣TET1 signaling circuit in MLL-rearranged leukemia.
Cancer Lett. 2016 Mar 28;372(2):157-65. doi: 10.1016/j.canlet.2015.12.032. Epub 2016 Jan 11.
6
Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia.
Nat Commun. 2017 Dec 13;8(1):2099. doi: 10.1038/s41467-017-02290-w.
8
TET1 exerts its tumor suppressor function by interacting with p53-EZH2 pathway in gastric cancer.
J Biomed Nanotechnol. 2014 Jul;10(7):1217-30. doi: 10.1166/jbn.2014.1861.
9
Tet1 Suppresses p21 to Ensure Proper Cell Cycle Progression in Embryonic Stem Cells.
Cells. 2022 Apr 17;11(8):1366. doi: 10.3390/cells11081366.
10
Hypoxia switches TET1 from being tumor-suppressive to oncogenic.
Oncogene. 2023 May;42(20):1634-1648. doi: 10.1038/s41388-023-02659-w. Epub 2023 Apr 5.

引用本文的文献

1
Epigenetic regulation of cancer stemness.
Signal Transduct Target Ther. 2025 Aug 1;10(1):243. doi: 10.1038/s41392-025-02340-6.
2
TET1: The epigenetic architect of clinical disease progression.
Genes Dis. 2025 Jan 4;12(5):101513. doi: 10.1016/j.gendis.2025.101513. eCollection 2025 Sep.
4
CRISPR screening reveals ZNF217 as a vulnerability in high-risk B-cell acute lymphoblastic leukemia.
Theranostics. 2025 Feb 18;15(8):3234-3256. doi: 10.7150/thno.100295. eCollection 2025.
5
YTHDF2 promotes ATP synthesis and immune evasion in B cell malignancies.
Cell. 2025 Jan 23;188(2):331-351.e30. doi: 10.1016/j.cell.2024.11.007. Epub 2024 Dec 17.
7
Marine-Derived Bisindoles for Potent Selective Cancer Drug Discovery and Development.
Molecules. 2024 Feb 21;29(5):933. doi: 10.3390/molecules29050933.
8
Epigenetic marks or not? The discovery of novel DNA modifications in eukaryotes.
J Biol Chem. 2024 Apr;300(4):106791. doi: 10.1016/j.jbc.2024.106791. Epub 2024 Feb 23.

本文引用的文献

1
Mitochondrial homeostasis regulates definitive endoderm differentiation of human pluripotent stem cells.
Cell Death Discov. 2022 Feb 17;8(1):69. doi: 10.1038/s41420-022-00867-z.
5
The language of chromatin modification in human cancers.
Nat Rev Cancer. 2021 Jul;21(7):413-430. doi: 10.1038/s41568-021-00357-x. Epub 2021 May 17.
6
Surface Proteomics Reveals CD72 as a Target for -Evolved Nanobody-Based CAR-T Cells in -Rearranged B-ALL.
Cancer Discov. 2021 Aug;11(8):2032-2049. doi: 10.1158/2159-8290.CD-20-0242. Epub 2021 Mar 16.
7
Signalling input from divergent pathways subverts B cell transformation.
Nature. 2020 Jul;583(7818):845-851. doi: 10.1038/s41586-020-2513-4. Epub 2020 Jul 22.
8
TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition.
Leukemia. 2021 Feb;35(2):389-403. doi: 10.1038/s41375-020-0864-3. Epub 2020 May 15.
9
SynergyFinder 2.0: visual analytics of multi-drug combination synergies.
Nucleic Acids Res. 2020 Jul 2;48(W1):W488-W493. doi: 10.1093/nar/gkaa216.
10
mA Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer.
Cancer Cell. 2020 Mar 16;37(3):270-288. doi: 10.1016/j.ccell.2020.02.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验