Suppr超能文献

使用 LSTM-CRP 概念框架进行物联网应用的雾设备主动故障预测。

Proactive Fault Prediction of Fog Devices Using LSTM-CRP Conceptual Framework for IoT Applications.

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India.

出版信息

Sensors (Basel). 2023 Mar 8;23(6):2913. doi: 10.3390/s23062913.

Abstract

Technology plays a significant role in our daily lives as real-time applications and services such as video surveillance systems and the Internet of Things (IoT) are rapidly developing. With the introduction of fog computing, a large amount of processing has been done by fog devices for IoT applications. However, a fog device's reliability may be affected by insufficient resources at fog nodes, which may fail to process the IoT applications. There are obvious maintenance challenges associated with many read-write operations and hazardous edge environments. To increase reliability, scalable fault-predictive proactive methods are needed that predict the failure of inadequate resources of fog devices. In this paper, a Recurrent Neural Network (RNN)-based method to predict proactive faults in the event of insufficient resources in fog devices based on a conceptual Long Short-Term Memory (LSTM) and novel Computation Memory and Power (CRP) rule-based network policy is proposed. To identify the precise cause of failure due to inadequate resources, the proposed CRP is built upon the LSTM network. As part of the conceptual framework proposed, fault detectors and fault monitors prevent the outage of fog nodes while providing services to IoT applications. The results show that the LSTM along with the CRP network policy method achieves a prediction accuracy of 95.16% on the training data and a 98.69% accuracy on the testing data, which significantly outperforms the performance of existing machine learning and deep learning techniques. Furthermore, the presented method predicts proactive faults with a normalized root mean square error of 0.017, providing an accurate prediction of fog node failure. The proposed framework experiments show a significant improvement in the prediction of inaccurate resources of fog nodes by having a minimum delay, low processing time, improved accuracy, and the failure rate of prediction was faster in comparison to traditional LSTM, Support Vector Machines (SVM), and Logistic Regression.

摘要

技术在我们的日常生活中扮演着重要的角色,因为实时应用程序和服务(如视频监控系统和物联网)正在迅速发展。随着雾计算的引入,大量的处理工作已经由雾设备为物联网应用程序完成。然而,雾设备的可靠性可能会受到雾节点资源不足的影响,这可能会导致物联网应用程序无法处理。许多读写操作和危险的边缘环境带来了明显的维护挑战。为了提高可靠性,需要使用可扩展的故障预测主动方法来预测雾设备资源不足的故障。在本文中,提出了一种基于循环神经网络(RNN)的方法,用于预测雾设备资源不足时的主动故障,该方法基于概念性长短时记忆(LSTM)和新颖的计算内存和功率(CRP)基于规则的网络策略。为了准确识别由于资源不足导致的故障原因,提出的 CRP 是基于 LSTM 网络构建的。作为所提出的概念框架的一部分,故障探测器和故障监视器在为物联网应用程序提供服务的同时防止雾节点中断。结果表明,LSTM 与 CRP 网络策略方法在训练数据上的预测准确率为 95.16%,在测试数据上的准确率为 98.69%,明显优于现有机器学习和深度学习技术的性能。此外,所提出的方法以归一化均方根误差 0.017 的预测主动故障,对雾节点故障进行了准确预测。提出的框架实验表明,通过最小延迟、低处理时间、提高准确性,以及与传统 LSTM、支持向量机(SVM)和逻辑回归相比更快的预测失败率,对雾节点不准确资源的预测有了显著的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/532c/10054027/d1b9568bfb04/sensors-23-02913-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验