Department of Computer Science and Engineering, NCR-PMEC Berhampur, Faculty of Engineering, BPUT, Rourkela 769015, Odisha, India.
Department of Computer Science and Engineering, Parala Maharaja Engineering College (Govt), Berhampur 761003, Odisha, India.
Comput Intell Neurosci. 2022 Dec 22;2022:6967938. doi: 10.1155/2022/6967938. eCollection 2022.
Fog computing provides a multitude of end-based IoT system services. End IoT devices exchange information with fog nodes and the cloud to handle client undertakings. During the process of data collection between the layer of fog and the cloud, there are more chances of crucial attacks or assaults like DDoS and many more security attacks being compromised by IoT end devices. These network (NW) threats must be spotted early. Deep learning (DL) assumes an unmistakable part in foreseeing the end client behavior by extricating highlights and grouping the foe in the network. Yet, because of IoT devices' compelled nature in calculation and storage spaces, DL cannot be managed on those. Here, a framework for fog-based attack detection is proffered, and different attacks are prognosticated utilizing long short-term memory (LSTM). The end IoT gadget behaviour can be prognosticated by installing a trained LSTMDL model at the fog node computation module. The simulations are performed using Python by comparing LSTMDL model with deep neural multilayer perceptron (DNMLP), bidirectional LSTM (Bi-LSTM), gated recurrent units (GRU), hybrid ensemble model (HEM), and hybrid deep learning model (CNN + LSTM) comprising convolutional neural network (CNN) and LSTM on DDoS-SDN (Mendeley Dataset), NSLKDD, UNSW-NB15, and IoTID20 datasets. To evaluate the performance of the binary classifier, metrics like accuracy, precision, recall, f1-score, and ROC-AUC curves are considered on these datasets. The LSTMDL model shows outperforming nature in binary classification with 99.70%, 99.12%, 94.11%, and 99.88% performance accuracies on experimentation with respective datasets. The network simulation further shows how different DL models present fog layer communication behaviour detection time (CBDT). DNMLP detects communication behaviour (CB) faster than other models, but LSTMDL predicts assaults better.
雾计算为基于物联网的端到端系统提供了众多服务。物联网终端设备通过雾节点与云进行信息交换,从而处理客户端任务。在雾层与云之间的数据收集过程中,物联网终端设备更容易受到 DDoS 等关键攻击或攻击,这些网络(NW)威胁必须及早发现。深度学习(DL)通过提取特征和对网络中的敌人进行分组,在预测最终客户行为方面发挥着重要作用。然而,由于物联网设备在计算和存储方面的强制性,DL 无法在这些设备上进行管理。这里提出了一种基于雾的攻击检测框架,并利用长短时记忆(LSTM)预测不同的攻击。通过在雾节点计算模块中安装经过训练的 LSTM-DL 模型,可以预测物联网终端设备的行为。使用 Python 进行模拟,并在 DDoS-SDN(Mendeley 数据集)、NSLKDD、UNSW-NB15 和 IoTID20 数据集上使用深度神经网络多层感知器(DNMLP)、双向 LSTM(Bi-LSTM)、门控循环单元(GRU)、混合集成模型(HEM)和卷积神经网络(CNN)+LSTM 的混合深度学习模型(CNN)+LSTM 对 LSTM-DL 模型进行比较,评估二进制分类器的性能。在这些数据集上,使用准确性、精度、召回率、f1 分数和 ROC-AUC 曲线等指标来评估二进制分类器的性能。LSTM-DL 模型在二进制分类中表现出了优异的性能,在各自的数据集上的准确率分别为 99.70%、99.12%、94.11%和 99.88%。网络模拟进一步展示了不同的 DL 模型如何检测雾层通信行为检测时间(CBDT)。DNMLP 比其他模型更快地检测通信行为(CB),但 LSTM-DL 更好地预测攻击。