Nancy A Angel, Ravindran Dakshanamoorthy, Vincent Durai Raj, Srinivasan Kathiravan, Chang Chuan-Yu
Department of Computer Science, St. Joseph's College (Autonomous), Bharathidasan University, Tiruchirappalli 620002, India.
School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India.
Diagnostics (Basel). 2023 Jun 15;13(12):2071. doi: 10.3390/diagnostics13122071.
The ongoing fast-paced technology trend has brought forth ceaseless transformation. In this regard, cloud computing has long proven to be the paramount deliverer of services such as computing power, software, networking, storage, and databases on a pay-per-use basis. The cloud is a big proponent of the internet of things (IoT), furnishing the computation and storage requisite to address internet-of-things applications. With the proliferating IoT devices triggering a continual data upsurge, the cloud-IoT interaction encounters latency, bandwidth, and connectivity restraints. The inclusion of the decentralized and distributed fog computing layer amidst the cloud and IoT layer extends the cloud's processing, storage, and networking services close to end users. This hierarchical edge-fog-cloud model distributes computation and intelligence, yielding optimal solutions while tackling constraints like massive data volume, latency, delay, and security vulnerability. The healthcare domain, warranting time-critical functionalities, can reap benefits from the cloud-fog-IoT interplay. This research paper propounded a fog-assisted smart healthcare system to diagnose heart or cardiovascular disease. It combined a fuzzy inference system (FIS) with the recurrent neural network model's variant of the gated recurrent unit (GRU) for pre-processing and predictive analytics tasks. The proposed system showcases substantially improved performance results, with classification accuracy at 99.125%. With major processing of healthcare data analytics happening at the fog layer, it is observed that the proposed work reveals optimized results concerning delays in terms of latency, response time, and jitter, compared to the cloud. Deep learning models are adept at handling sophisticated tasks, particularly predictive analytics. Time-critical healthcare applications reap benefits from deep learning's exclusive potential to furnish near-perfect results, coupled with the merits of the decentralized fog model, as revealed by the experimental results.
持续的快节奏技术趋势带来了不断的变革。在这方面,长期以来,云计算已被证明是按使用付费提供计算能力、软件、网络、存储和数据库等服务的首要提供者。云是物联网(IoT)的大力支持者,为处理物联网应用提供所需的计算和存储。随着物联网设备的激增引发数据持续增长,云与物联网的交互面临延迟、带宽和连接限制。在云和物联网层之间加入分散式和分布式的雾计算层,将云的处理、存储和网络服务扩展到接近终端用户的位置。这种分层的边缘 - 雾 - 云模型分布计算和智能,在解决海量数据量、延迟、时延和安全漏洞等限制的同时,产生最优解决方案。医疗保健领域需要时间关键型功能,可以从云 - 雾 - 物联网的相互作用中受益。这篇研究论文提出了一种雾辅助智能医疗系统来诊断心脏或心血管疾病。它将模糊推理系统(FIS)与门控循环单元(GRU)这种循环神经网络模型的变体相结合,用于预处理和预测分析任务。所提出的系统展示了显著提高的性能结果,分类准确率达到99.125%。由于医疗数据分析的主要处理在雾层进行,可以观察到,与云相比,所提出的工作在延迟、响应时间和抖动方面的延迟方面显示出优化的结果。深度学习模型擅长处理复杂任务,特别是预测分析。实验结果表明,时间关键型医疗应用受益于深度学习提供近乎完美结果的独特潜力,以及分散式雾模型的优点。