Politecnico di Milano, Department of Architecture, Built Environment and Construction Engineering (ABClab-GICARUS), Via Ponzio, 31, 20133 Milan, Italy.
Sensors (Basel). 2023 Mar 8;23(6):2947. doi: 10.3390/s23062947.
This study aims to develop a workflow methodology for collecting substantial amounts of Earth Observation data to investigate the effectiveness of landscape restoration actions and support the implementation of the Above Ground Carbon Capture indicator of the Ecosystem Restoration Camps (ERC) Soil Framework. To achieve this objective, the study will utilize the Google Earth Engine API within R (rGEE) to monitor the Normalized Difference Vegetation Index (NDVI). The results of this study will provide a common scalable reference for ERC camps globally, with a specific focus on Camp Altiplano, the first European ERC located in Murcia, Southern Spain. The coding workflow has effectively acquired almost 12 TB of data for analyzing MODIS/006/MOD13Q1 NDVI over a 20-year span. Additionally, the average retrieval of image collections has yielded 120 GB of data for the COPERNICUS/S2_SR 2017 vegetation growing season and 350 GB of data for the COPERNICUS/S2_SR 2022 vegetation winter season. Based on these results, it is reasonable to asseverate that cloud computing platforms like GEE will enable the monitoring and documentation of regenerative techniques to achieve unprecedented levels. The findings will be shared on a predictive platform called Restor, which will contribute to the development of a global ecosystem restoration model.
本研究旨在开发一种工作流程方法,以收集大量地球观测数据,调查景观恢复行动的有效性,并支持实施生态恢复营(ERC)土壤框架的地上碳捕获指标。为了实现这一目标,该研究将利用 R 中的 Google Earth Engine API(rGEE)监测归一化差异植被指数(NDVI)。本研究的结果将为全球 ERC 营地提供一个通用的可扩展参考,特别关注位于西班牙南部穆尔西亚的第一个欧洲 ERC——Altiplano 营地。该编码工作流程有效地获取了近 12TB 的数据,用于分析跨越 20 年的 MODIS/006/MOD13Q1 NDVI。此外,COPERNICUS/S2_SR 2017 植被生长季节图像集合的平均检索产生了 120GB 的数据,而 COPERNICUS/S2_SR 2022 植被冬季季节的检索则产生了 350GB 的数据。基于这些结果,可以合理地断言,像 GEE 这样的云计算平台将能够监测和记录再生技术,以实现前所未有的水平。研究结果将在一个名为 Restor 的预测平台上共享,该平台将有助于开发全球生态系统恢复模型。