Suppr超能文献

基于手势识别的 AGV 控制:初步研究。

Using Gesture Recognition for AGV Control: Preliminary Research.

机构信息

Department of Measurements and Control Systems, Silesian University of Technology, Akademicka 10A, 44-100 Gliwice, Poland.

Department of Mechatronics, Silesian University of Technology, Akademicka 10A, 44-100 Gliwice, Poland.

出版信息

Sensors (Basel). 2023 Mar 14;23(6):3109. doi: 10.3390/s23063109.

Abstract

In this paper, we present our investigation of the 2D Hand Gesture Recognition (HGR) which may be suitable for the control of the Automated Guided Vehicle (AGV). In real conditions, we deal with, among others, a complex background, changing lighting conditions, and different distances of the operator from the AGV. For this reason, in the article, we describe the database of 2D images created during the research. We tested classic algorithms and modified them by us ResNet50 and MobileNetV2 which were retrained partially using the transfer learning approach, as well as proposed a simple and effective Convolutional Neural Network (CNN). As part of our work, we used a closed engineering environment for rapid prototyping of vision algorithms, i.e., Adaptive Vision Studio (AVS), currently Zebra Aurora Vision, as well as an open Python programming environment. In addition, we shortly discuss the results of preliminary work on 3D HGR, which seems to be very promising for future work. The results show that, in our case, from the point of view of implementing the gesture recognition methods in AGVs, better results may be expected for RGB images than grayscale ones. Also using 3D imaging and a depth map may give better results.

摘要

本文介绍了我们对 2D 手势识别(HGR)的研究,该研究可用于自动引导车(AGV)的控制。在实际条件下,我们需要处理复杂的背景、不断变化的照明条件以及操作人员与 AGV 的不同距离等问题。因此,本文描述了在研究过程中创建的 2D 图像数据库。我们测试了经典算法,并通过我们的 ResNet50 和 MobileNetV2 对其进行了修改,这些模型使用迁移学习方法进行了部分重新训练,同时还提出了一种简单而有效的卷积神经网络(CNN)。作为我们工作的一部分,我们使用了一个封闭的工程环境来快速原型化视觉算法,即自适应视觉工作室(AVS),目前是斑马 Aurora Vision,以及一个开放的 Python 编程环境。此外,我们还简要讨论了 3D HGR 的初步工作结果,这对于未来的工作似乎非常有前景。结果表明,就我们而言,从在 AGV 中实现手势识别方法的角度来看,RGB 图像可能比灰度图像产生更好的结果。此外,使用 3D 成像和深度图也可能会得到更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验