Kim Yeun, Joshi Anand A, Choi Soyoung, Joshi Shantanu H, Bhushan Chitresh, Varadarajan Divya, Haldar Justin P, Leahy Richard M, Shattuck David W
bioRxiv. 2024 Sep 9:2023.03.14.532686. doi: 10.1101/2023.03.14.532686.
There has been a concerted effort by the neuroimaging community to establish standards for computational methods for data analysis that promote reproducibility and portability. In particular, the Brain Imaging Data Structure (BIDS) specifies a standard for storing imaging data, and the related BIDS App methodology provides a standard for implementing containerized processing environments that include all necessary dependencies to process BIDS datasets using image processing workflows. We present the BrainSuite BIDS App, which encapsulates the core MRI processing functionality of BrainSuite within the BIDS App framework. Specifically, the BrainSuite BIDS App implements a participant-level workflow comprising three pipelines and a corresponding set of group-level analysis workflows for processing the participant-level outputs. The Anatomical Pipeline extracts cortical surface models from a T1-weighted (T1w) MRI. It then performs surface-constrained volumetric registration to align the T1w MRI to a labeled anatomical atlas, which is used to delineate anatomical regions of interest in the MRI brain volume and on the cortical surface models. The Diffusion Pipeline processes diffusion-weighted imaging (DWI) data, with steps that include coregistering the DWI data to the T1w scan, correcting for susceptibility-induced geometric image distortion, and fitting diffusion models to the DWI data. The Functional Pipeline performs fMRI processing using a combination of FSL, AFNI, and BrainSuite tools. It coregisters the fMRI data to the T1w image, then transforms the data to the anatomical atlas space and to the Human Connectome Project's grayordinate space. The outputs of each pipeline can then be processed during group-level analysis. The outputs of the Anatomical Pipeline and the Diffusion Pipeline are analyzed using the BrainSuite Statistics Toolbox in R (bstr), which provides functionality for hypothesis testing and statistical modeling. The outputs of the Functional Pipeline can be analyzed using atlas-based or atlas-free statistical methods during group-level processing. These analyses include the application of BrainSync, which synchronizes the time-series data temporally and enables comparison of resting-state or task-based fMRI data across scans. We also present the BrainSuite Dashboard quality control system, which provides a browser-based interface for reviewing the outputs of individual modules of the participant-level pipelines across a study in real-time as they are generated. BrainSuite Dashboard facilitates rapid review of intermediate results, enabling users to identify processing errors and make adjustments to processing parameters if necessary. The comprehensive functionality included in the BrainSuite BIDS App provides a mechanism for rapidly deploying the BrainSuite workflows into new environments to perform large-scale studies. We demonstrate the capabilities of the BrainSuite BIDS App using structural, diffusion, and functional MRI data from the Amsterdam Open MRI Collection's Population Imaging of Psychology dataset.
神经成像领域一直在齐心协力为数据分析的计算方法建立标准,以促进可重复性和可移植性。特别是,脑成像数据结构(BIDS)规定了存储成像数据的标准,相关的BIDS应用方法为实现容器化处理环境提供了标准,该环境包括使用图像处理工作流程处理BIDS数据集所需的所有依赖项。我们展示了BrainSuite BIDS应用程序,它在BIDS应用程序框架内封装了BrainSuite的核心MRI处理功能。具体而言,BrainSuite BIDS应用程序实现了一个参与者级工作流程,该流程包括三个管道以及一组相应的用于处理参与者级输出的组级分析工作流程。解剖管道从T1加权(T1w)MRI中提取皮质表面模型。然后,它执行表面约束的体积配准,将T1w MRI与标记的解剖图谱对齐,该图谱用于在MRI脑体积和皮质表面模型上描绘感兴趣的解剖区域。扩散管道处理扩散加权成像(DWI)数据,其步骤包括将DWI数据与T1w扫描进行配准、校正由磁化率引起的几何图像失真,以及将扩散模型拟合到DWI数据。功能管道使用FSL、AFNI和BrainSuite工具的组合来执行功能磁共振成像(fMRI)处理。它将fMRI数据与T1w图像进行配准,然后将数据转换到解剖图谱空间和人类连接组计划的灰质坐标空间。然后可以在组级分析期间处理每个管道的输出。解剖管道和扩散管道的输出使用R中的BrainSuite统计工具箱(bstr)进行分析,该工具箱提供假设检验和统计建模的功能。在组级处理期间,可以使用基于图谱或无图谱的统计方法分析功能管道的输出。这些分析包括应用BrainSync,它在时间上同步时间序列数据,并能够在不同扫描之间比较静息态或基于任务的fMRI数据。我们还展示了BrainSuite仪表板质量控制系统,它提供了一个基于浏览器的界面,用于在参与者级管道的各个模块的输出在生成时实时跨研究进行审查。BrainSuite仪表板有助于快速审查中间结果,使用户能够识别处理错误,并在必要时调整处理参数。BrainSuite BIDS应用程序中包含的综合功能提供了一种机制,可将BrainSuite工作流程快速部署到新环境中以进行大规模研究。我们使用来自阿姆斯特丹开放MRI数据集的人口成像心理学数据集的结构、扩散和功能MRI数据展示了BrainSuite BIDS应用程序的功能。