基于静息态 fMRI 的皮质脑回亚区划分的混合高分辨率解剖 MRI 图谱
A hybrid high-resolution anatomical MRI atlas with sub-parcellation of cortical gyri using resting fMRI.
机构信息
Signal and Image Processing Institute, University of Southern California, Los Angeles, USA.
Signal and Image Processing Institute, University of Southern California, Los Angeles, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, USA.
出版信息
J Neurosci Methods. 2022 May 15;374:109566. doi: 10.1016/j.jneumeth.2022.109566. Epub 2022 Mar 17.
We present a new high-quality, single-subject atlas with sub-millimeter voxel resolution, high SNR, and excellent gray-white tissue contrast to resolve fine anatomical details. The atlas is labeled into two parcellation schemes: 1) the anatomical BCI-DNI atlas, which is manually labeled based on known morphological and anatomical features, and 2) the hybrid USCBrain atlas, which incorporates functional information to guide the sub-parcellation of cerebral cortex. In both cases, we provide consistent volumetric and cortical surface-based parcellation and labeling. The intended use of the atlas is as a reference template for structural coregistration and labeling of individual brains. A single-subject T1-weighted image was acquired five times at a resolution of 0.547 mm × 0.547 mm × 0.800 mm and averaged. Images were processed by an expert neuroanatomist using semi-automated methods in BrainSuite to extract the brain, classify tissue-types, and render anatomical surfaces. Sixty-six cortical and 29 noncortical regions were manually labeled to generate the BCI-DNI atlas. The cortical regions were further sub-parcellated into 130 cortical regions based on multi-subject connectivity analysis using resting fMRI (rfMRI) data from the Human Connectome Project (HCP) database to produce the USCBrain atlas. In addition, we provide a delineation between sulcal valleys and gyral crowns, which offer an additional set of 26 sulcal subregions per hemisphere. Lastly, a probabilistic map is provided to give users a quantitative measure of reliability for each gyral subdivision. Utility of the atlas was assessed by computing Adjusted Rand Indices (ARIs) between individual sub-parcellations obtained through structural-only coregistration to the USCBrain atlas and sub-parcellations obtained directly from each subject's resting fMRI data. Both atlas parcellations can be used with the BrainSuite, FreeSurfer, and FSL software packages.
我们提出了一种新的高质量、单个体素分辨率、高信噪比和出色的灰白质组织对比度的单个主体图谱,以解决精细的解剖细节。该图谱分为两种分割方案:1)解剖 BCI-DNI 图谱,它是根据已知的形态和解剖特征手动标记的,2)混合 USCBrain 图谱,它结合了功能信息来指导大脑皮层的亚分割。在这两种情况下,我们都提供了一致的体积和皮质表面分割和标记。该图谱的预期用途是作为个体大脑结构配准和标记的参考模板。单次采集的 T1 加权图像分辨率为 0.547mm×0.547mm×0.800mm,共采集了 5 次,并进行了平均处理。图像由一位神经解剖学专家使用 BrainSuite 中的半自动方法进行处理,以提取大脑、分类组织类型和呈现解剖表面。手动标记了 66 个皮质和 29 个非皮质区域,以生成 BCI-DNI 图谱。皮质区域根据来自人类连接组计划(HCP)数据库的静息 fMRI(rfMRI)数据的多主体连接分析进一步细分为 130 个皮质区域,以生成 USCBrain 图谱。此外,我们提供了脑回谷和脑回冠之间的划分,这为每个半球提供了另外 26 个脑回亚区。最后,提供了一个概率图,为每个脑回细分提供了一个定量的可靠性度量。通过计算通过结构仅配准到 USCBrain 图谱获得的个体亚分割与直接从每个受试者的静息 fMRI 数据获得的亚分割之间的调整兰德指数(ARI)来评估图谱的效用。该图谱的两个分区都可以与 BrainSuite、FreeSurfer 和 FSL 软件包一起使用。
相似文献
J Neurosci Methods. 2022-5-15
Magn Reson Imaging. 2016-2
Neuroimage. 2017-12-5
Front Neuroinform. 2020-9-10
Brain Connect. 2020-5
引用本文的文献
Neurosurg Rev. 2025-2-19
Hum Brain Mapp. 2024-12-1
Sovrem Tekhnologii Med. 2024
Insights Imaging. 2024-8-26
本文引用的文献
Hum Brain Mapp. 2022-8-15
Neuroimage. 2019-9-12
Proc IEEE Int Symp Biomed Imaging. 2018-4