Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences CCM, Berlin, Germany.
Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia.
Hum Brain Mapp. 2022 Jun 15;43(9):2727-2742. doi: 10.1002/hbm.25829. Epub 2022 Mar 19.
The reproducibility crisis in neuroimaging has led to an increased demand for standardized data processing workflows. Within the ENIGMA consortium, we developed HALFpipe (Harmonized Analysis of Functional MRI pipeline), an open-source, containerized, user-friendly tool that facilitates reproducible analysis of task-based and resting-state fMRI data through uniform application of preprocessing, quality assessment, single-subject feature extraction, and group-level statistics. It provides state-of-the-art preprocessing using fMRIPrep without the requirement for input data in Brain Imaging Data Structure (BIDS) format. HALFpipe extends the functionality of fMRIPrep with additional preprocessing steps, which include spatial smoothing, grand mean scaling, temporal filtering, and confound regression. HALFpipe generates an interactive quality assessment (QA) webpage to rate the quality of key preprocessing outputs and raw data in general. HALFpipe features myriad post-processing functions at the individual subject level, including calculation of task-based activation, seed-based connectivity, network-template (or dual) regression, atlas-based functional connectivity matrices, regional homogeneity (ReHo), and fractional amplitude of low-frequency fluctuations (fALFF), offering support to evaluate a combinatorial number of features or preprocessing settings in one run. Finally, flexible factorial models can be defined for mixed-effects regression analysis at the group level, including multiple comparison correction. Here, we introduce the theoretical framework in which HALFpipe was developed, and present an overview of the main functions of the pipeline. HALFpipe offers the scientific community a major advance toward addressing the reproducibility crisis in neuroimaging, providing a workflow that encompasses preprocessing, post-processing, and QA of fMRI data, while broadening core principles of data analysis for producing reproducible results. Instructions and code can be found at https://github.com/HALFpipe/HALFpipe.
神经影像学的可重复性危机导致对标准化数据处理工作流程的需求增加。在 ENIGMA 联盟内,我们开发了 HALFpipe(功能磁共振成像管道的协调分析),这是一个开源、容器化、用户友好的工具,通过统一应用预处理、质量评估、单个体特征提取和组级统计,促进基于任务和静息态 fMRI 数据的可重复分析。它使用 fMRIPrep 提供最先进的预处理,而不需要以 Brain Imaging Data Structure (BIDS) 格式输入数据。HALFpipe 通过附加预处理步骤扩展了 fMRIPrep 的功能,其中包括空间平滑、总均值缩放、时间滤波和混淆回归。HALFpipe 生成一个交互式质量评估 (QA) 网页,以评估关键预处理输出和原始数据的总体质量。HALFpipe 在个体层面具有众多后处理功能,包括基于任务的激活、种子连接、网络模板(或双)回归、基于图谱的功能连接矩阵、区域同质性 (ReHo) 和低频波动的分数幅度 (fALFF) 的计算,支持在一次运行中评估组合数量的特征或预处理设置。最后,可以在组水平上定义灵活的因子模型进行混合效应回归分析,包括多重比较校正。在这里,我们介绍了开发 HALFpipe 的理论框架,并概述了管道的主要功能。HALFpipe 为科学界提供了在神经影像学可重复性危机方面的重大进展,提供了一个涵盖 fMRI 数据预处理、后处理和 QA 的工作流程,同时扩大了数据分析的核心原则,以产生可重复的结果。指令和代码可在 https://github.com/HALFpipe/HALFpipe 找到。