Suppr超能文献

嵴的形成是由内膜脂质组控制的机械屈曲事件。

Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome.

作者信息

Venkatraman Kailash, Lee Christopher T, Garcia Guadalupe C, Mahapatra Arijit, Milshteyn Daniel, Perkins Guy, Kim Keun-Young, Pasolli H Amalia, Phan Sebastien, Lippincott-Schwartz Jennifer, Ellisman Mark H, Rangamani Padmini, Budin Itay

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093.

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093.

出版信息

bioRxiv. 2023 Sep 2:2023.03.13.532310. doi: 10.1101/2023.03.13.532310.

Abstract

Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.

摘要

嵴是线粒体内膜(IMM)中具有高曲率的结构,对ATP的产生至关重要。虽然嵴形成蛋白已被确定,但脂质的类似机制尚未阐明。在这里,我们将实验性脂质组剖析与多尺度建模相结合,以研究脂质相互作用如何决定IMM形态和ATP生成。当调节工程酵母菌株中的磷脂(PL)饱和度时,我们观察到IMM拓扑结构中出现了一个惊人的突变点,这是由嵴嵴处ATP合酶组织的持续丧失驱动的。我们发现心磷脂(CL)能特异性地缓冲IMM防止曲率丧失,这种效应与ATP合酶二聚化无关。为了解释这种相互作用,我们开发了一个嵴小管形成的连续模型,该模型整合了脂质和蛋白质介导的曲率。该模型突出了一种突变不稳定性,这种不稳定性会在膜性质发生微小变化时导致IMM塌陷。我们还表明,CL在促进PL饱和的低氧条件下至关重要。这些结果表明,CL的机械功能取决于IMM周围的脂质和蛋白质成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0f/10486820/7a1b8ff0c700/nihpp-2023.03.13.532310v3-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验