Kumar Pawan, Kannimuthu Karthick, Zeraati Ali Shayesteh, Roy Soumyabrata, Wang Xiao, Wang Xiyang, Samanta Subhajyoti, Miller Kristen A, Molina Maria, Trivedi Dhwanil, Abed Jehad, Campos Mata M Astrid, Al-Mahayni Hasan, Baltrusaitis Jonas, Shimizu George, Wu Yimin A, Seifitokaldani Ali, Sargent Edward H, Ajayan Pulickel M, Hu Jinguang, Kibria Md Golam
Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77030, United States.
J Am Chem Soc. 2023 Apr 12;145(14):8052-8063. doi: 10.1021/jacs.3c00537. Epub 2023 Mar 30.
Single atom catalysts (SACs) possess unique catalytic properties due to low-coordination and unsaturated active sites. However, the demonstrated performance of SACs is limited by low SAC loading, poor metal-support interactions, and nonstable performance. Herein, we report a macromolecule-assisted SAC synthesis approach that enabled us to demonstrate high-density Co single atoms (10.6 wt % Co SAC) in a pyridinic N-rich graphenic network. The highly porous carbon network (surface area of ∼186 m g) with increased conjugation and vicinal Co site decoration in Co SACs significantly enhanced the electrocatalytic oxygen evolution reaction (OER) in 1 M KOH (η at 351 mV; mass activity of 2209 mA mg at 1.65 V) with more than 300 h stability. Operando X-ray absorption near-edge structure demonstrates the formation of electron-deficient Co-O coordination intermediates, accelerating OER kinetics. Density functional theory (DFT) calculations reveal the facile electron transfer from cobalt to oxygen species-accelerated OER.
单原子催化剂(SACs)由于低配位和不饱和活性位点而具有独特的催化性能。然而,SACs已展示出的性能受到低SAC负载量、不良的金属-载体相互作用以及不稳定性能的限制。在此,我们报道了一种大分子辅助的SAC合成方法,该方法使我们能够在富含吡啶氮的石墨烯网络中展示高密度的钴单原子(10.6 wt%的Co SAC)。具有增强共轭性且在Co SACs中存在邻位钴位点修饰的高度多孔碳网络(表面积约为186 m²/g)显著增强了在1 M KOH中的电催化析氧反应(OER)(在351 mV时的过电位η;在1.65 V时的质量活性为2209 mA mg⁻¹),且具有超过300小时的稳定性。原位X射线吸收近边结构表明形成了缺电子的Co-O配位中间体,加速了OER动力学。密度泛函理论(DFT)计算揭示了从钴到氧物种的 facile电子转移加速了OER。