Ji Chengwei, Duan Huimei, Wang Chuanhui, Liang Guizeng, Long Xiaojing, She Xilin, Zhang Rongrong, Gong Feilong, Li Daohao, Yang Dongjiang, Liu Jian
State Key Laboratory of Bio-fibers and Eco-textiles, School of Environment and Geography, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Adv Mater. 2025 Jul;37(28):e2503879. doi: 10.1002/adma.202503879. Epub 2025 Apr 16.
The urea oxidation reaction (UOR) is a promising approach for replacing the oxygen evolution reaction in hydrogen production, offering lower energy consumption. However, the kinetics of Ni-based catalysts for UOR are hindered by the high formation potential of NiOOH and its repeated transition with Ni(OH). In this study, a local microenvironment featuring electron-deficient N-vacancies (V) paired with adjacent electron-rich Ni-sites on NiN (NiN-V) to enhance UOR kinetics is constructed. The electron-rich Ni-sites significantly reduce the energy barrier for NiOOH formation and promote the conversion of Ni(OH) to NiOOH. Meanwhile, the V sites induce low charge transfer resistance in NiN, facilitating efficient electron transfer and boosting UOR performance while ensuring the stability of the active NiOOH phase. The V sites promote the adsorption of the urea N atom at the active site, favoring the reaction pathway toward "NCO⁻" formation without requiring complete urea dissociation. This pathway alleviates the NiOOH/Ni(OH) conversion cycle, lowers charge transfer resistance, and improves reaction kinetics. NiN-V demonstrates excellent UOR activity (low potential of 1.46 V at 1000 mA cm) and industrial prospects (integrating into an anion exchange membrane flow electrolyzer with 20% Pt/C, producing 600 mA cm at 1.84 V), highlighting its potential for practical applications.
尿素氧化反应(UOR)是一种很有前景的方法,可用于替代制氢中的析氧反应,具有较低的能耗。然而,用于UOR的镍基催化剂的动力学受到NiOOH的高生成电位及其与Ni(OH)的反复转变的阻碍。在本研究中,构建了一种局部微环境,其特征是在NiN(NiN-V)上具有缺电子的N空位(V)与相邻的富电子Ni位点配对,以增强UOR动力学。富电子的Ni位点显著降低了NiOOH形成的能垒,并促进了Ni(OH)向NiOOH的转化。同时,V位点在NiN中诱导出低电荷转移电阻,促进高效电子转移并提高UOR性能,同时确保活性NiOOH相的稳定性。V位点促进尿素N原子在活性位点的吸附,有利于生成“NCO⁻”的反应途径,而无需尿素完全解离。该途径减轻了NiOOH/Ni(OH)转化循环,降低了电荷转移电阻,并改善了反应动力学。NiN-V表现出优异的UOR活性(在1000 mA cm时低电位为1.46 V)和工业前景(集成到含20% Pt/C的阴离子交换膜流动电解槽中,在1.84 V时产生600 mA cm),突出了其实际应用潜力。