Suppr超能文献

基于 MRI 放射组学、影像和临床参数的联合机器学习模型的开发和验证,用于识别女孩特发性中枢性性早熟。

Development and Validation of a Combined MRI Radiomics, Imaging and Clinical Parameter-Based Machine Learning Model for Identifying Idiopathic Central Precocious Puberty in Girls.

机构信息

Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.

Department of Radiology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.

出版信息

J Magn Reson Imaging. 2023 Dec;58(6):1977-1987. doi: 10.1002/jmri.28709. Epub 2023 Mar 30.

Abstract

BACKGROUND

Idiopathic central precocious puberty (ICPP) impairs child development, without early intervention. The current reference standard, the gonadotropin-releasing hormone stimulation test, is invasive which may hinder diagnosis and intervention.

PURPOSE

To develop a model for accurate diagnosis of ICPP, by integrating pituitary MRI, carpal bone age, gonadal ultrasound, and basic clinical data.

STUDY TYPE

Retrospective.

POPULATION

A total of 492 girls with PP (185 with ICPP and 307 peripheral precocious puberty [PPP]) were randomly divided by reference standard into training (75%) and internal validation (25%) data. Fifty-one subjects (16 with ICPP, 35 with PPP) provided by another hospital as external validation.

FIELD STRENGTH/SEQUENCE: T1-weighted (spin echo [SE], fast SE, cube) and T2-weighted (fast SE-fat suppression) imaging at 3.0 T or 1.5 T.

ASSESSMENT

Radiomics features were extracted from pituitary MRI after manual segmentation. Carpal bone age, ovarian, follicle and uterine volumes and endometrium presence were assessed from radiographs and gonadal ultrasound. Four machine learning methods were developed: a pituitary MRI radiomics model, an integrated image model (with pituitary MRI, gonadal ultrasound and bone age), a basic clinical model (with age and sex hormone data), and an integrated multimodal model combining all features.

STATISTICAL TESTS

Intraclass correlation coefficients were used to assess consistency of segmentation. Receiver operating characteristic (ROC) curves and the Delong tests were used to assess and compare the diagnostic performance of models. P < 0.05 was considered statistically significant.

RESULTS

The area under of the ROC curve (AUC) of the pituitary MRI radiomics model, integrated image model, basic clinical model, and integrated multimodal model in the training data was 0.668, 0.809, 0.792, and 0.860. The integrated multimodal model had higher diagnostic efficacy (AUC of 0.862 and 0.866 for internal and external validation).

CONCLUSION

The integrated multimodal model may have potential as an alternative clinical approach to diagnose ICPP.

EVIDENCE LEVEL

TECHNICAL EFFICACY

Stage 2.

摘要

背景

特发性中枢性性早熟(ICPP)会损害儿童发育,如果不进行早期干预。目前的参考标准是促性腺激素释放激素刺激试验,但该方法具有侵入性,可能会阻碍诊断和干预。

目的

通过整合垂体 MRI、腕骨龄、性腺超声和基本临床数据,建立一种准确诊断 ICPP 的模型。

研究类型

回顾性。

人群

共有 492 名性早熟女童(185 例 ICPP 和 307 例外周性性早熟[PPP]),根据参考标准随机分为训练(75%)和内部验证(25%)数据。另有 51 例(16 例 ICPP,35 例 PPP)由另一所医院提供作为外部验证。

磁场强度/序列:3.0T 或 1.5T 上的 T1 加权(自旋回波[SE]、快速 SE、立方体)和 T2 加权(快速 SE 脂肪抑制)成像。

评估

从手动分割后的垂体 MRI 中提取放射组学特征。从 X 光片和性腺超声中评估腕骨龄、卵巢、卵泡和子宫体积以及子宫内膜的存在。开发了四种机器学习方法:垂体 MRI 放射组学模型、综合图像模型(包括垂体 MRI、性腺超声和骨龄)、基本临床模型(包括年龄和性激素数据)以及结合所有特征的综合多模态模型。

统计学检验

使用组内相关系数评估分割的一致性。使用接收者操作特征(ROC)曲线和 Delong 检验评估和比较模型的诊断性能。P<0.05 为具有统计学意义。

结果

在训练数据中,垂体 MRI 放射组学模型、综合图像模型、基本临床模型和综合多模态模型的 ROC 曲线下面积(AUC)分别为 0.668、0.809、0.792 和 0.860。综合多模态模型具有更高的诊断效能(内部和外部验证的 AUC 分别为 0.862 和 0.866)。

结论

综合多模态模型可能成为诊断 ICPP 的一种替代临床方法。

证据水平

3 级。

技术功效

2 级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验