Suppr超能文献

垂体 MRI 影像组学提高儿童身材矮小生长激素缺乏症的诊断性能:一项多中心影像组学研究。

Pituitary MRI Radiomics Improves Diagnostic Performance of Growth Hormone Deficiency in Children Short Stature: A Multicenter Radiomics Study.

机构信息

Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.

Department of Radiology, Children's hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.

出版信息

Acad Radiol. 2024 Sep;31(9):3783-3792. doi: 10.1016/j.acra.2024.05.009. Epub 2024 May 25.

Abstract

RATIONALE AND OBJECTIVES

To develop an efficient machine-learning model using pituitary MRI radiomics and clinical data to differentiate growth hormone deficiency (GHD) from idiopathic short stature (ISS), making the diagnostic process more acceptable to patients and their families.

MATERIALS AND METHODS

A retrospective cohort of 297 GHD and 300 ISS children (4-12 years) were enrolled as training and validation cohorts (8:2 ratio). An external cohort from another institution (49 GHD and 51 ISS) was employed as the testing cohort. Radiomics features extracted from the anterior pituitary gland on sagittal T1-weighted image (1.5 T or 3.0 T) were used to develop a radiomics model after feature selection. Hematological biomarkers were selected to create a clinical model and combine with the optimal radiomics features to create a clinical-radiomics model. The area under the receive operating characteristic curve (AUC) and Delong test compared the diagnostic performance of the previously mentioned three models across different validation and testing cohorts.

RESULTS

17 radiomics features were selected for the radiomics model, and total protein, total cholesterol, free triiodothyronine, and triglyceride were utilized for the clinical model. In the training and validation cohorts, the diagnostic performance of the clinical-radiomics model (AUC=0.820 and 0.801) was comparable to the radiomics model (AUC=0.812 and 0.779, both P >0.05), both outperforming the clinical model (AUC=0.575 and 0.593, P <0.001). In the testing cohort, the clinical-radiomics model exhibited the highest AUC of 0.762 than the clinical and radiomics model (AUC=0.604 and 0.741, respectively, P <0.05). In addition, the clinical and radiomics models demonstrated similar diagnostic performance in the testing cohort (P >0.05).

CONCLUSION

Integrating radiomics features from conventional pituitary MRI with clinical indicators offers a minimally invasive approach for identifying GHD and shows robustness in a multicenter setting.

摘要

背景与目的

利用垂体 MRI 影像组学和临床数据开发一种高效的机器学习模型,以区分生长激素缺乏症(GHD)和特发性身材矮小(ISS),使诊断过程更能被患者及其家属接受。

材料与方法

回顾性纳入 297 例 GHD 患儿和 300 例 ISS 患儿(8:2 比例)作为训练和验证队列。另一机构的外部队列(49 例 GHD 和 51 例 ISS)作为测试队列。在矢状位 T1 加权图像(1.5T 或 3.0T)上提取垂体前叶的影像组学特征,经过特征选择后用于构建影像组学模型。选择血液学生物标志物构建临床模型,并与最优影像组学特征相结合构建临床-影像组学模型。使用接收者操作特征曲线(ROC)下面积(AUC)和 Delong 检验比较了上述三种模型在不同验证和测试队列中的诊断性能。

结果

共筛选出 17 个影像组学特征用于构建影像组学模型,总蛋白、总胆固醇、游离三碘甲状腺原氨酸和甘油三酯用于构建临床模型。在训练和验证队列中,临床-影像组学模型(AUC=0.820 和 0.801)的诊断性能与影像组学模型(AUC=0.812 和 0.779,均 P>0.05)相当,均优于临床模型(AUC=0.575 和 0.593,P<0.001)。在测试队列中,临床-影像组学模型的 AUC 为 0.762,高于临床模型和影像组学模型(AUC=0.604 和 0.741,P<0.05)。此外,临床和影像组学模型在测试队列中具有相似的诊断性能(P>0.05)。

结论

将常规垂体 MRI 影像组学特征与临床指标相结合,为识别 GHD 提供了一种微创方法,在多中心环境中具有稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验