Suppr超能文献

基于金属有机框架的仿生纳米系统将冷肿瘤转化为热肿瘤用于增强免疫治疗

Transforming Cold Tumors into Hot Ones with a Metal-Organic Framework-Based Biomimetic Nanosystem for Enhanced Immunotherapy.

机构信息

Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.

State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, China.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 12;15(14):17470-17484. doi: 10.1021/acsami.2c21005. Epub 2023 Mar 30.

Abstract

Immunotherapy has revolutionized the landscape in clinical tumor therapy, although the response rates in "cold" tumors are relatively low owing to the complex tumor microenvironment (TME). Cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) pathway-inducing agents can reprogram the TME; however, their applications remain underutilized. Herein, we engineered a facile manganese-based metal-organic framework (Mn-MOF) encapsulating polyphyllin I (PPI) and coated it with red blood cell (RBC) membranes (RBC@Mn-MOF/PPI) that enhanced the cGAS/STING-mediated antitumor immunity. RBC@Mn-MOF/PPI was engineered by camouflaging it with a biomimetic RBC membrane for prolonged blood circulation and immune escape, which was also extended with TME-sensitive properties for triggering the release of PPI and Mn to remodel the suppressive TME and augment antitumor immune responses. Furthermore, RBC@Mn-MOF/PPI helped transform cold tumors into "hot" ones by activating immune cells, as evidenced via dendritic cell maturation, cytotoxic T lymphocyte infiltration, and natural killer cell recruitment, thereby targeting primary and abscopal tumors and lung metastatic nodules. Therefore, our engineered nanosystem represents a novel strategy to transform immunologically "cold" tumors into "hot" ones by activating the cGAS/STING pathway, thereby addressing the major challenges associated with immunotherapy.

摘要

免疫疗法彻底改变了临床肿瘤治疗的格局,尽管由于复杂的肿瘤微环境 (TME),“冷”肿瘤的反应率相对较低。环鸟苷单磷酸-腺苷单磷酸合酶/干扰素基因刺激物 (cGAS/STING) 途径诱导剂可以重新编程 TME;然而,它们的应用仍未得到充分利用。在这里,我们设计了一种简便的锰基金属有机骨架 (Mn-MOF) 封装了重楼皂苷 I (PPI),并将其包裹在红细胞 (RBC) 膜中(RBC@Mn-MOF/PPI),增强了 cGAS/STING 介导的抗肿瘤免疫。RBC@Mn-MOF/PPI 通过伪装成仿生 RBC 膜来延长血液循环和免疫逃逸时间,同时还具有 TME 敏感特性,可触发 PPI 和 Mn 的释放,重塑抑制性 TME 并增强抗肿瘤免疫反应。此外,RBC@Mn-MOF/PPI 通过激活免疫细胞,将冷肿瘤转化为“热”肿瘤,这一点可以通过树突状细胞成熟、细胞毒性 T 淋巴细胞浸润和自然杀伤细胞募集来证明,从而靶向原发性和远处肿瘤以及肺转移结节。因此,我们设计的纳米系统通过激活 cGAS/STING 途径将免疫“冷”肿瘤转化为“热”肿瘤,代表了一种新的策略,从而解决了免疫疗法面临的主要挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验