Suppr超能文献

评估 BAYESIL 在使用有限样本量的情况下对 H NMR 数据进行自动注释的效果:在非洲象血清中的应用。

Evaluation of BAYESIL for automated annotation of H NMR data using limited sample volumes: application to African elephant serum.

机构信息

Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.

Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.

出版信息

Metabolomics. 2023 Mar 30;19(4):31. doi: 10.1007/s11306-023-02001-1.

Abstract

INTRODUCTION

Technological advancements enabled the analyses of limited sample volumes on H NMR. Manual spectral profiling of the data is, however, complex, and timely.

OBJECTIVE

To evaluate the performance of BAYESIL for automated identification and quantification of H NMR spectra of limited volume samples.

METHOD

Aliquots of a pooled African elephant serum sample were analyzed using standard and reduced volumes. Performance was evaluated on confidence scores, non-detects and laboratory CV.

RESULTS

Of the 47 compounds detected, 28 had favorable performances. The approach could differentiate samples based on biological variation.

CONCLUSIONS

BAYESIL is valuable for limited sample H NMR data analyses.

摘要

简介

技术进步使得对 H NMR 的有限样本量进行分析成为可能。然而,手动对数据进行光谱分析非常复杂且耗时。

目的

评估 BAYESIL 在自动识别和定量有限体积样本的 H NMR 光谱方面的性能。

方法

使用标准和减少的体积分析 pooled African elephant serum 样本的等分试样。性能评估基于置信分数、未检出和实验室 CV。

结果

在所检测的 47 种化合物中,有 28 种具有良好的性能。该方法可以基于生物变异性来区分样本。

结论

BAYESIL 对有限样本量的 H NMR 数据分析很有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0be0/10063514/2bc71a8d89a3/11306_2023_2001_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验