Suppr超能文献

NMRFinder:一种用于一维 H-NMR 代谢物注释的新方法。

NMRFinder: a novel method for 1D H-NMR metabolite annotation.

机构信息

CEB-Centre Biological Engineering, University of Minho, 4710-057, Braga, Portugal.

Plant Morphogenesis and Biochemistry Laboratory, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.

出版信息

Metabolomics. 2021 Feb 1;17(2):21. doi: 10.1007/s11306-021-01772-9.

Abstract

INTRODUCTION

Methods for the automated and accurate identification of metabolites in 1D H-NMR samples are crucial, but this is still an unsolved problem. Most available tools are mainly focused on metabolite quantification, thus limiting the number of metabolites that can be identified. Also, most only use reference spectra obtained under the same specific conditions of the target sample, limiting the use of available knowledge.

OBJECTIVES

The main goal of this work was to develop novel methods to perform metabolite annotation from 1D H-NMR peaks with enhanced reliability, to aid the users in metabolite identification. An essential step was to construct a vast and up-do-date library of reference 1D H-NMR peak lists collected under distinct experimental conditions.

METHODS

Three different algorithms were evaluated for their capacity to correctly annotate metabolites present in both synthetic and real samples and compared to publicly available tools. The best proposed method was evaluated in a plethora of scenarios, including missing references, missing peaks and peak shifts, to assess its annotation accuracy, precision and recall.

RESULTS

We gathered 1816 peak lists for 1387 different metabolites from several sources across different conditions for our reference library. A new method, NMRFinder, is proposed and allows matching 1D H-NMR samples with all the reference peak lists in the library, regardless of acquisition conditions. Metabolites are scored according to the number of peaks matching the samples, how unique their peaks are in the library and how close the spectrum acquisition conditions are in relation to those of the samples. Results show a true positive rate of 0.984 when analysing computationally created samples, while 71.8% of the metabolites were annotated when analysing samples from previously identified public datasets.

CONCLUSION

NMRFinder performs metabolite annotation reliably and outperforms previous methods, being of great value in helping the user to ultimately identify metabolites. It is implemented in the R package specmine.

摘要

简介

在一维 H-NMR 样品中自动且准确地识别代谢物的方法至关重要,但这仍然是一个未解决的问题。大多数现有的工具主要集中在代谢物定量上,从而限制了可以识别的代谢物数量。此外,大多数工具仅使用在与目标样品相同的特定条件下获得的参考光谱,限制了可用知识的使用。

目的

这项工作的主要目标是开发新的方法从一维 H-NMR 峰中进行代谢物注释,以提高可靠性,帮助用户进行代谢物鉴定。一个重要步骤是构建一个广泛而最新的参考 1D H-NMR 峰列表库,这些峰列表是在不同的实验条件下收集的。

方法

评估了三种不同的算法,以评估它们正确注释存在于合成和真实样品中的代谢物的能力,并与公开可用的工具进行比较。所提出的最佳方法在多种情况下进行了评估,包括缺少参考、缺少峰和峰位移,以评估其注释的准确性、精度和召回率。

结果

我们从不同的来源收集了 1387 种不同代谢物的 1816 个峰列表,这些代谢物的峰列表跨越了不同的条件,用于我们的参考库。我们提出了一种新的方法 NMRFinder,它允许将一维 H-NMR 样品与库中的所有参考峰列表进行匹配,而不管采集条件如何。代谢物根据与样品匹配的峰数量、在库中峰的独特性以及光谱采集条件与样品条件的接近程度进行评分。结果表明,在分析计算生成的样品时,真实阳性率为 0.984,而在分析来自先前鉴定的公共数据集的样品时,71.8%的代谢物被注释。

结论

NMRFinder 可靠地执行代谢物注释,并且优于以前的方法,对于帮助用户最终识别代谢物具有重要价值。它在 R 包 specmine 中实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验