Suppr超能文献

利用深度学习技术检测青春期前小鼠睾丸中的精原干细胞/祖细胞。

Detection of spermatogonial stem/progenitor cells in prepubertal mouse testis with deep learning.

机构信息

Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey.

Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.

出版信息

J Assist Reprod Genet. 2023 May;40(5):1187-1195. doi: 10.1007/s10815-023-02784-1. Epub 2023 Mar 30.

Abstract

PURPOSE

Rapid and easy detection of spermatogonial stem/progenitor cells (SSPCs) is crucial for clinicians dealing with male infertility caused by prepubertal testicular damage. Deep learning (DL) methods may offer visual tools for tracking SSPCs on testicular strips of prepubertal animal models. The purpose of this study is to detect and count the seminiferous tubules and SSPCs in newborn mouse testis sections using a DL method.

METHODS

Testicular sections of the C57BL/6-type newborn mice were obtained and enumerated. Odd-numbered sections were stained with hematoxylin and eosin (H&E), and even-numbered sections were immune labeled (IL) with SSPC specific marker, SALL4. Seminiferous tubule and SSPC datasets were created using odd-numbered sections. SALL4-labeled sections were used as positive control. The YOLO object detection model based on DL was used to detect seminiferous tubules and stem cells.

RESULTS

Test scores of the DL model in seminiferous tubules were obtained as 0.98 mAP, 0.93 precision, 0.96 recall, and 0.94 f1-score. The SSPC test scores were obtained as 0.88 mAP, 0.80 precision, 0.93 recall, and 0.82 f1-score.

CONCLUSION

Seminiferous tubules and SSPCs on prepubertal testicles were detected with a high sensitivity by preventing human-induced errors. Thus, the first step was taken for a system that automates the detection and counting process of these cells in the infertility clinic.

摘要

目的

快速、简便地检测精原干细胞/祖细胞(SSPCs)对于处理因青春期前睾丸损伤导致的男性不育症的临床医生至关重要。深度学习(DL)方法可为青春期前动物模型的睾丸条带中 SSPCs 的跟踪提供可视化工具。本研究旨在使用 DL 方法检测和计数新生小鼠睾丸切片中的生精小管和 SSPCs。

方法

获取 C57BL/6 型新生小鼠的睾丸切片并进行计数。奇数切片用苏木精和伊红(H&E)染色,偶数切片用 SSPC 特异性标志物 SALL4 免疫标记(IL)。使用奇数切片创建生精小管和 SSPC 数据集。SALL4 标记的切片用作阳性对照。使用基于 DL 的 YOLO 目标检测模型来检测生精小管和干细胞。

结果

DL 模型在生精小管中的测试分数分别为 0.98 mAP、0.93 精度、0.96 召回率和 0.94 f1 分数。SSPC 的测试分数分别为 0.88 mAP、0.80 精度、0.93 召回率和 0.82 f1 分数。

结论

通过防止人为错误,以高灵敏度检测了青春期前睾丸上的生精小管和 SSPCs。因此,为自动化不育症诊所中这些细胞的检测和计数过程迈出了第一步。

相似文献

1
Detection of spermatogonial stem/progenitor cells in prepubertal mouse testis with deep learning.
J Assist Reprod Genet. 2023 May;40(5):1187-1195. doi: 10.1007/s10815-023-02784-1. Epub 2023 Mar 30.
4
Irinotecan metabolite SN38 results in germ cell loss in the testis but not in the ovary of prepubertal mice.
Mol Hum Reprod. 2016 Nov;22(11):745-755. doi: 10.1093/molehr/gaw051. Epub 2016 Jul 28.
5
Irradiation affects germ and somatic cells in prepubertal monkey testis xenografts.
Mol Hum Reprod. 2017 Mar 1;23(3):141-154. doi: 10.1093/molehr/gax003.
7
Computer assisted image analysis to assess colonization of recipient seminiferous tubules by spermatogonial stem cells from transgenic donor mice.
Mol Reprod Dev. 1999 Jun;53(2):142-8. doi: 10.1002/(SICI)1098-2795(199906)53:2<142::AID-MRD3>3.0.CO;2-O.
9
Characterization and Survival of Human Infant Testicular Cells After Direct Xenotransplantation.
Front Endocrinol (Lausanne). 2022 Mar 10;13:853482. doi: 10.3389/fendo.2022.853482. eCollection 2022.
10
Spermatogenesis in testis xenografts grafted from pre-pubertal Holstein bulls is re-established by stem cell or early spermatogonia.
Anim Reprod Sci. 2008 Jan 15;103(1-2):1-12. doi: 10.1016/j.anireprosci.2006.11.018. Epub 2006 Dec 1.

引用本文的文献

本文引用的文献

2
DeepHistoClass: A Novel Strategy for Confident Classification of Immunohistochemistry Images Using Deep Learning.
Mol Cell Proteomics. 2021;20:100140. doi: 10.1016/j.mcpro.2021.100140. Epub 2021 Aug 21.
4
Computerized spermatogenesis staging (CSS) of mouse testis sections via quantitative histomorphological analysis.
Med Image Anal. 2021 May;70:101835. doi: 10.1016/j.media.2020.101835. Epub 2020 Oct 10.
5
Deep Learning-Based Spermatogenic Staging Assessment for Hematoxylin and Eosin-Stained Sections of Rat Testes.
Toxicol Pathol. 2021 Jun;49(4):872-887. doi: 10.1177/0192623320969678. Epub 2020 Nov 28.
6
Leptin promotes proliferation of neonatal mouse stem/progenitor spermatogonia.
J Assist Reprod Genet. 2020 Nov;37(11):2825-2838. doi: 10.1007/s10815-020-01929-w. Epub 2020 Aug 25.
7
Overview of artificial intelligence in medicine.
J Family Med Prim Care. 2019 Jul;8(7):2328-2331. doi: 10.4103/jfmpc.jfmpc_440_19.
8
Deep learning for the classification of human sperm.
Comput Biol Med. 2019 Aug;111:103342. doi: 10.1016/j.compbiomed.2019.103342. Epub 2019 Jun 25.
9
Automatic segmentation of Sperm's parts in microscopic images of human semen smears using concatenated learning approaches.
Comput Biol Med. 2019 Jun;109:242-253. doi: 10.1016/j.compbiomed.2019.04.032. Epub 2019 Apr 30.
10
A novel deep learning method for automatic assessment of human sperm images.
Comput Biol Med. 2019 Jun;109:182-194. doi: 10.1016/j.compbiomed.2019.04.030. Epub 2019 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验