Suppr超能文献

一种新型深度学习方法,用于自动评估人类精子图像。

A novel deep learning method for automatic assessment of human sperm images.

机构信息

Department of Computer Engineering, University of Guilan, Rasht, Iran.

出版信息

Comput Biol Med. 2019 Jun;109:182-194. doi: 10.1016/j.compbiomed.2019.04.030. Epub 2019 Apr 26.

Abstract

Sperm morphology analysis (SMA) is a very important factor in the diagnosis process of male infertility. This research proposes a novel deep learning algorithm for malformation detection of sperm morphology using human sperm cell images. Our proposed method detects and analyzes different parts of human sperms. First of all, we have prepared an image collection, called the MHSMA dataset, which can be used as a standard benchmark for future machine learning studies in this problem. This collection consists of 1,540 sperm images from 235 patients with male factor infertility. This unique dataset is freely available to the public. After applying data augmentation techniques, we have proposed a sampling method for fixing data imbalance. Then, we have designed a deep neural network architecture and trained it to detect morphological deformities in different parts of human sperm-head, acrosome, and vacuole. Our proposed method is one of the first algorithms that considers the acrosome. In addition, our method can work very well with non-stained and low-resolution images. Our experimental results on the proposed benchmark show the high accuracy of our deep learning algorithm for detection of morphological deformities from images. In these experiments, the proposed algorithm has achieved F scores of 84.74%, 83.86%, and 94.65% in acrosome, head, and vacuole abnormality detection, respectively. It should be noted that our algorithm achieves a better accuracy than existing state-of-the-art methods in acrosome and vacuole abnormality detection on the proposed benchmark. Also, our method works very fast. It can classify images in real-time, even on a mainstream laptop computer. This allows an embryologist to quickly decide whether or not the analyzed sperm should be selected.

摘要

精子形态分析(SMA)是男性不育诊断过程中的一个非常重要的因素。本研究提出了一种使用人类精子细胞图像进行精子形态畸形检测的新型深度学习算法。我们提出的方法检测和分析人类精子的不同部位。首先,我们准备了一个图像集合,称为 MHSMA 数据集,可作为该问题未来机器学习研究的标准基准。该集合包含 235 名男性因素不育患者的 1540 张精子图像。这个独特的数据集是免费提供给公众的。在应用数据增强技术之后,我们提出了一种用于固定数据不平衡的采样方法。然后,我们设计了一种深度神经网络架构,并对其进行了训练,以检测人类精子头部、顶体和空泡不同部位的形态畸形。我们提出的方法是第一个考虑顶体的算法之一。此外,我们的方法可以很好地处理未染色和低分辨率的图像。我们在提出的基准上进行的实验结果表明,我们的深度学习算法在从图像中检测形态畸形方面具有很高的准确性。在这些实验中,所提出的算法在顶体、头部和空泡异常检测方面分别达到了 84.74%、83.86%和 94.65%的 F 分数。值得注意的是,与现有基于基准的最先进方法相比,我们的算法在顶体和空泡异常检测方面具有更好的准确性。此外,我们的方法速度非常快。即使在主流笔记本电脑上,它也可以实时分类图像。这使得胚胎学家可以快速决定是否选择分析的精子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验