Suppr超能文献

机器学习模型、可信研究环境和英国健康数据:确保人工智能在医疗保健领域的安全和有益发展。

Machine learning models, trusted research environments and UK health data: ensuring a safe and beneficial future for AI development in healthcare.

机构信息

School of Medicine, University of Dundee, Dundee, UK

Dundee Law School, School of Humanities Social Sciences and Law, University of Dundee, Dundee, UK.

出版信息

J Med Ethics. 2023 Nov 23;49(12):838-843. doi: 10.1136/jme-2022-108696.

Abstract

Digitalisation of health and the use of health data in artificial intelligence, and machine learning (ML), including for applications that will then in turn be used in healthcare are major themes permeating current UK and other countries' healthcare systems and policies. Obtaining rich and representative data is key for robust ML development, and UK health data sets are particularly attractive sources for this. However, ensuring that such research and development is in the public interest, produces public benefit and preserves privacy are key challenges. Trusted research environments (TREs) are positioned as a way of balancing the diverging interests in healthcare data research with privacy and public benefit. Using TRE data to train ML models presents various challenges to the balance previously struck between these societal interests, which have hitherto not been discussed in the literature. These challenges include the possibility of personal data being disclosed in ML models, the dynamic nature of ML models and how public benefit may be (re)conceived in this context. For ML research to be facilitated using UK health data, TREs and others involved in the UK health data policy ecosystem need to be aware of these issues and work to address them in order to continue to ensure a 'safe' health and care data environment that truly serves the public.

摘要

健康的数字化以及在人工智能和机器学习(ML)中使用健康数据,包括将随后应用于医疗保健的应用程序,是当前英国和其他国家医疗保健系统和政策中的主要主题。获得丰富且有代表性的数据是稳健的 ML 开发的关键,而英国的健康数据集是此类数据的特别有吸引力的来源。然而,确保此类研究和开发符合公众利益并保护隐私是关键挑战。可信研究环境(TRE)被定位为在医疗保健数据研究的利益与隐私和公众利益之间取得平衡的一种方式。使用 TRE 数据来训练 ML 模型对以前在这些社会利益之间取得的平衡提出了各种挑战,这些挑战迄今尚未在文献中讨论过。这些挑战包括个人数据在 ML 模型中被披露的可能性、ML 模型的动态性质以及在这种情况下如何重新构想公共利益。为了使用英国健康数据促进 ML 研究,使用 TRE 和参与英国健康数据政策生态系统的其他人需要意识到这些问题,并努力解决这些问题,以继续确保一个真正为公众服务的“安全”的健康和护理数据环境。

相似文献

4
Healthcare workers' informal uses of mobile phones and other mobile devices to support their work: a qualitative evidence synthesis.
Cochrane Database Syst Rev. 2024 Aug 27;8(8):CD015705. doi: 10.1002/14651858.CD015705.pub2.
5
How to Implement Digital Clinical Consultations in UK Maternity Care: the ARM@DA Realist Review.
Health Soc Care Deliv Res. 2025 May 21:1-77. doi: 10.3310/WQFV7425.
7
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
9
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

引用本文的文献

1
Population health management genomic new-born screens and multi-omics intercepts.
Front Artif Intell. 2025 Jul 29;7:1496942. doi: 10.3389/frai.2024.1496942. eCollection 2024.
3
Data protection legislation in Africa and pathways for enhancing compliance in big data health research.
Health Res Policy Syst. 2024 Oct 15;22(1):145. doi: 10.1186/s12961-024-01230-7.
4
Ten simple rules for building and maintaining a responsible data science workflow.
PLoS Comput Biol. 2024 Jul 18;20(7):e1012232. doi: 10.1371/journal.pcbi.1012232. eCollection 2024 Jul.

本文引用的文献

1
Disclosure control of machine learning models from trusted research environments (TRE): New challenges and opportunities.
Heliyon. 2023 Apr 3;9(4):e15143. doi: 10.1016/j.heliyon.2023.e15143. eCollection 2023 Apr.
2
Trusted research environments are definitely about trust.
J Med Ethics. 2023 Sep;49(9):656-657. doi: 10.1136/jme-2022-108678. Epub 2022 Nov 2.
3
Trust and the Goldacre Review: why trusted research environments are not about trust.
J Med Ethics. 2023 Oct;49(10):670-673. doi: 10.1136/jme-2022-108435. Epub 2022 Aug 23.
4
NHS data breaches: a further erosion of trust.
BMJ. 2022 May 11;377:o1187. doi: 10.1136/bmj.o1187.
5
Hundreds of patient data breaches are left unpunished.
BMJ. 2022 May 11;377:o1126. doi: 10.1136/bmj.o1126.
6
The medical algorithmic audit.
Lancet Digit Health. 2022 May;4(5):e384-e397. doi: 10.1016/S2589-7500(22)00003-6. Epub 2022 Apr 5.
7
Public health inequalities, structural missingness, and digital revolution: time to question assumptions.
J Public Health Policy. 2021 Dec;42(4):531-535. doi: 10.1057/s41271-021-00312-y. Epub 2021 Nov 22.
8
Privacy and artificial intelligence: challenges for protecting health information in a new era.
BMC Med Ethics. 2021 Sep 15;22(1):122. doi: 10.1186/s12910-021-00687-3.
9
Can the NHS successfully deliver its GP data extraction scheme?
BMJ. 2021 Sep 2;374:n2170. doi: 10.1136/bmj.n2170.
10
Before and beyond trust: reliance in medical AI.
J Med Ethics. 2022 Nov;48(11):852-856. doi: 10.1136/medethics-2020-107095. Epub 2021 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验