Suppr超能文献

医学算法审计

The medical algorithmic audit.

作者信息

Liu Xiaoxuan, Glocker Ben, McCradden Melissa M, Ghassemi Marzyeh, Denniston Alastair K, Oakden-Rayner Lauren

机构信息

Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, UK; Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Health Data Research UK, London, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK.

Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, UK.

出版信息

Lancet Digit Health. 2022 May;4(5):e384-e397. doi: 10.1016/S2589-7500(22)00003-6. Epub 2022 Apr 5.

Abstract

Artificial intelligence systems for health care, like any other medical device, have the potential to fail. However, specific qualities of artificial intelligence systems, such as the tendency to learn spurious correlates in training data, poor generalisability to new deployment settings, and a paucity of reliable explainability mechanisms, mean they can yield unpredictable errors that might be entirely missed without proactive investigation. We propose a medical algorithmic audit framework that guides the auditor through a process of considering potential algorithmic errors in the context of a clinical task, mapping the components that might contribute to the occurrence of errors, and anticipating their potential consequences. We suggest several approaches for testing algorithmic errors, including exploratory error analysis, subgroup testing, and adversarial testing, and provide examples from our own work and previous studies. The medical algorithmic audit is a tool that can be used to better understand the weaknesses of an artificial intelligence system and put in place mechanisms to mitigate their impact. We propose that safety monitoring and medical algorithmic auditing should be a joint responsibility between users and developers, and encourage the use of feedback mechanisms between these groups to promote learning and maintain safe deployment of artificial intelligence systems.

摘要

用于医疗保健的人工智能系统与其他任何医疗设备一样,都有可能出现故障。然而,人工智能系统的一些特定特性,比如在训练数据中倾向于学习虚假关联、对新的部署环境缺乏良好的泛化能力以及缺乏可靠的可解释机制,这意味着它们可能会产生不可预测的错误,而如果不进行主动调查,这些错误可能会完全被忽视。我们提出了一个医学算法审核框架,该框架引导审核人员经历这样一个过程:在临床任务的背景下考虑潜在的算法错误,确定可能导致错误发生的组件,并预测其潜在后果。我们建议了几种测试算法错误的方法,包括探索性错误分析、亚组测试和对抗性测试,并提供了我们自己的工作以及先前研究中的示例。医学算法审核是一种工具,可用于更好地了解人工智能系统的弱点,并建立机制来减轻其影响。我们建议安全监测和医学算法审核应由用户和开发者共同负责,并鼓励这些群体之间使用反馈机制,以促进学习并维持人工智能系统的安全部署。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验