Department of Organ Surgery and Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Center for Surgical Translational and Artificial Intelligence Research (CSTAR), Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Sci Rep. 2023 Mar 30;13(1):5176. doi: 10.1038/s41598-023-32453-3.
The risks of post trauma complications are regulated by the injury, comorbidities, and the clinical trajectories, yet prediction models are often limited to single time-point data. We hypothesize that deep learning prediction models can be used for risk prediction using additive data after trauma using a sliding windows approach. Using the American College of Surgeons Trauma Quality Improvement Program (ACS TQIP) database, we developed three deep neural network models, for sliding-windows risk prediction. Output variables included early- and late mortality and any of 17 complications. As patients moved through the treatment trajectories, performance metrics increased. Models predicted early- and late mortality with ROC AUCs ranging from 0.980 to 0.994 and 0.910 to 0.972, respectively. For the remaining 17 complications, the mean performance ranged from 0.829 to 0.912. In summary, the deep neural networks achieved excellent performance in the sliding windows risk stratification of trauma patients.
创伤后并发症的风险受损伤、合并症和临床轨迹的调节,但预测模型通常仅限于单一时间点数据。我们假设可以使用深度学习预测模型,通过滑动窗口方法,使用创伤后的附加数据进行风险预测。我们使用美国外科医师学会创伤质量改进计划 (ACS TQIP) 数据库,开发了三种用于滑动窗口风险预测的深度神经网络模型。输出变量包括早期和晚期死亡率以及 17 种并发症中的任何一种。随着患者在治疗轨迹中的移动,性能指标增加。模型预测早期和晚期死亡率的 ROC AUC 分别为 0.980 至 0.994 和 0.910 至 0.972。对于其余 17 种并发症,平均性能介于 0.829 至 0.912 之间。总之,深度神经网络在创伤患者的滑动窗口风险分层中表现出优异的性能。