Suppr超能文献

基于机器学习的创伤性脑损伤后动态死亡率预测。

Machine learning-based dynamic mortality prediction after traumatic brain injury.

机构信息

Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, PB 266, 00029 HUS, Helsinki, Finland.

Division of Anesthesiology, Department of Anesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Topeliuksenkatu 5, PB 266, 00029 HUS, Helsinki, Finland.

出版信息

Sci Rep. 2019 Nov 27;9(1):17672. doi: 10.1038/s41598-019-53889-6.

Abstract

Our aim was to create simple and largely scalable machine learning-based algorithms that could predict mortality in a real-time fashion during intensive care after traumatic brain injury. We performed an observational multicenter study including adult TBI patients that were monitored for intracranial pressure (ICP) for at least 24 h in three ICUs. We used machine learning-based logistic regression modeling to create two algorithms (based on ICP, mean arterial pressure [MAP], cerebral perfusion pressure [CPP] and Glasgow Coma Scale [GCS]) to predict 30-day mortality. We used a stratified cross-validation technique for internal validation. Of 472 included patients, 92 patients (19%) died within 30 days. Following cross-validation, the ICP-MAP-CPP algorithm's area under the receiver operating characteristic curve (AUC) increased from 0.67 (95% confidence interval [CI] 0.60-0.74) on day 1 to 0.81 (95% CI 0.75-0.87) on day 5. The ICP-MAP-CPP-GCS algorithm's AUC increased from 0.72 (95% CI 0.64-0.78) on day 1 to 0.84 (95% CI 0.78-0.90) on day 5. Algorithm misclassification was seen among patients undergoing decompressive craniectomy. In conclusion, we present a new concept of dynamic prognostication for patients with TBI treated in the ICU. Our simple algorithms, based on only three and four main variables, discriminated between survivors and non-survivors with accuracies up to 81% and 84%. These open-sourced simple algorithms can likely be further developed, also in low and middle-income countries.

摘要

我们的目的是创建简单且在很大程度上可扩展的基于机器学习的算法,以便在创伤性脑损伤后的重症监护期间实时预测死亡率。我们进行了一项观察性多中心研究,纳入了至少在三个 ICU 中监测颅内压 (ICP) 至少 24 小时的成年 TBI 患者。我们使用基于机器学习的逻辑回归建模来创建两种算法(基于 ICP、平均动脉压 [MAP]、脑灌注压 [CPP] 和格拉斯哥昏迷评分 [GCS])来预测 30 天死亡率。我们使用分层交叉验证技术进行内部验证。在纳入的 472 名患者中,92 名患者(19%)在 30 天内死亡。经过交叉验证后,ICP-MAP-CPP 算法的受试者工作特征曲线下面积(AUC)从第 1 天的 0.67(95%置信区间 [CI] 0.60-0.74)增加到第 5 天的 0.81(95% CI 0.75-0.87)。ICP-MAP-CPP-GCS 算法的 AUC 从第 1 天的 0.72(95% CI 0.64-0.78)增加到第 5 天的 0.84(95% CI 0.78-0.90)。在接受去骨瓣减压术的患者中观察到算法分类错误。总之,我们提出了一种新的 ICU 中 TBI 患者动态预后的概念。我们的简单算法基于仅三个和四个主要变量,可将幸存者和非幸存者区分开来,准确率高达 81%和 84%。这些开源的简单算法可能会进一步开发,也可能在低收入和中等收入国家进行开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cfd/6881446/b21da6318abc/41598_2019_53889_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验