Suppr超能文献

一种用于临床风险预测的公平且可解释的网络:一种正则化多视图多任务学习方法。

A fair and interpretable network for clinical risk prediction: a regularized multi-view multi-task learning approach.

作者信息

Pham Thai-Hoang, Yin Changchang, Mehta Laxmi, Zhang Xueru, Zhang Ping

机构信息

Department of Computer Science and Engineering, The Ohio State University, Columbus, USA.

Department of Biomedical Informatics, The Ohio State University, Columbus, USA.

出版信息

Knowl Inf Syst. 2023 Apr;65(4):1487-1521. doi: 10.1007/s10115-022-01813-2. Epub 2022 Dec 23.

Abstract

In healthcare domain, complication risk profiling which can be seen as multiple clinical risk prediction tasks is challenging due to the complex interaction between heterogeneous clinical entities. With the availability of real-world data, many deep learning methods are proposed for complication risk profiling. However, the existing methods face three open challenges. First, they leverage clinical data from a single view and then lead to suboptimal models. Second, most existing methods lack an effective mechanism to interpret predictions. Third, models learned from clinical data may have inherent pre-existing biases and exhibit discrimination against certain social groups. We then propose a multi-view multi-task network (MuViTaNet) to tackle these issues. MuViTaNet complements patient representation by using a encoder to exploit more information. Moreover, it uses a learning to generate more generalized representations using both labeled and unlabeled datasets. Last, a fairness variant (F-MuViTaNet) is proposed to mitigate the unfairness issues and promote healthcare equity. The experiments show that MuViTaNet outperforms existing methods for cardiac complication profiling. Its architecture also provides an effective mechanism for interpreting the predictions, which helps clinicians discover the underlying mechanism triggering the complication onsets. F-MuViTaNet can also effectively mitigate the unfairness with only negligible impact on accuracy.

摘要

在医疗保健领域,并发症风险分析可被视为多个临床风险预测任务,由于异构临床实体之间的复杂相互作用,这具有挑战性。随着真实世界数据的可用性,许多深度学习方法被提出用于并发症风险分析。然而,现有方法面临三个开放挑战。首先,它们从单一视角利用临床数据,从而导致次优模型。其次,大多数现有方法缺乏解释预测的有效机制。第三,从临床数据中学习的模型可能存在固有的先有偏差,并对某些社会群体表现出歧视。然后,我们提出了一种多视角多任务网络(MuViTaNet)来解决这些问题。MuViTaNet通过使用编码器来利用更多信息,从而补充患者表征。此外,它使用自训练来使用标记和未标记数据集生成更通用的表征。最后,提出了一种公平变体(F-MuViTaNet)来减轻不公平问题并促进医疗保健公平。实验表明,MuViTaNet在心脏并发症分析方面优于现有方法。其架构还为解释预测提供了一种有效机制,这有助于临床医生发现引发并发症发作的潜在机制。F-MuViTaNet还可以有效减轻不公平性,而对准确性的影响可以忽略不计。

相似文献

5
Semi-Supervised Multi-View Deep Discriminant Representation Learning.半监督多视图深度判别表示学习
IEEE Trans Pattern Anal Mach Intell. 2021 Jul;43(7):2496-2509. doi: 10.1109/TPAMI.2020.2973634. Epub 2021 Jun 8.
8
Co-Labeling for Multi-View Weakly Labeled Learning.多视图弱标签学习的联合标记。
IEEE Trans Pattern Anal Mach Intell. 2016 Jun;38(6):1113-25. doi: 10.1109/TPAMI.2015.2476813. Epub 2015 Sep 4.

本文引用的文献

4
Coronary heart disease and mortality following a breast cancer diagnosis.乳腺癌诊断后的冠心病和死亡率。
BMC Med Inform Decis Mak. 2020 May 13;20(1):88. doi: 10.1186/s12911-020-1127-y.
8
Heart Failure in Type 2 Diabetes Mellitus.2 型糖尿病中的心力衰竭。
Circ Res. 2019 Jan 4;124(1):121-141. doi: 10.1161/CIRCRESAHA.118.311371.
9
Ensuring Fairness in Machine Learning to Advance Health Equity.确保机器学习的公正性,以促进健康公平。
Ann Intern Med. 2018 Dec 18;169(12):866-872. doi: 10.7326/M18-1990. Epub 2018 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验