Liu Yuxi, Zhang Zhenhao, Qin Shaowen, Salim Flora D, Bian Jiang, Jimeno Yepes Antonio
College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
Proc (IEEE Int Conf Healthc Inform). 2024 Jun;2024:1-10. doi: 10.1109/ichi61247.2024.00009. Epub 2024 Aug 22.
Predictive analytics using Electronic Health Records (EHRs) have become an active research area in recent years, especially with the development of deep learning techniques. A popular EHR data analysis paradigm in deep learning is patient representation learning, which aims to learn a condensed mathematical representation of individual patients. However, EHR data are often inherently irregular, i.e., data entries were captured at different times as well as with different contents due to the individualized needs of each patient. Most of the work focused on the provision of deep neural networks with attention mechanisms that generate complete patient representations that can be readily used for downstream prediction tasks. However, such approaches fail to take patient similarity into account, which is generally used in clinical reasoning scenarios. This study presents a new Contrastive Graph Similarity Network for similarity calculation among patients in large EHR datasets. Particularly, we apply graph-based similarity analysis that explicitly extracts the clinical characteristics of each patient and aggregates the information of similar patients to generate rich patient representations. Experimental results on real-world EHR databases demonstrate the effectiveness and superiority of our method for the task of vital signs imputation and ICU patient deterioration prediction.
近年来,使用电子健康记录(EHR)的预测分析已成为一个活跃的研究领域,尤其是随着深度学习技术的发展。深度学习中一种流行的EHR数据分析范式是患者表示学习,其目的是学习个体患者的浓缩数学表示。然而,EHR数据通常本质上是不规则的,即由于每个患者的个性化需求,数据条目是在不同时间以及具有不同内容的情况下捕获的。大多数工作集中在为深度神经网络提供注意力机制,以生成可直接用于下游预测任务的完整患者表示。然而,这种方法没有考虑患者相似性,而患者相似性通常用于临床推理场景。本研究提出了一种新的对比图相似性网络,用于大型EHR数据集中患者之间的相似性计算。特别是,我们应用基于图的相似性分析,明确提取每个患者的临床特征,并汇总相似患者的信息以生成丰富的患者表示。在真实世界EHR数据库上的实验结果证明了我们的方法在生命体征插补和ICU患者病情恶化预测任务中的有效性和优越性。