Suppr超能文献

使用对比图相似性网络的细粒度患者相似性测量

Fine-grained Patient Similarity Measuring using Contrastive Graph Similarity Networks.

作者信息

Liu Yuxi, Zhang Zhenhao, Qin Shaowen, Salim Flora D, Bian Jiang, Jimeno Yepes Antonio

机构信息

College of Science and Engineering, Flinders University, Adelaide, SA, Australia.

College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.

出版信息

Proc (IEEE Int Conf Healthc Inform). 2024 Jun;2024:1-10. doi: 10.1109/ichi61247.2024.00009. Epub 2024 Aug 22.

Abstract

Predictive analytics using Electronic Health Records (EHRs) have become an active research area in recent years, especially with the development of deep learning techniques. A popular EHR data analysis paradigm in deep learning is patient representation learning, which aims to learn a condensed mathematical representation of individual patients. However, EHR data are often inherently irregular, i.e., data entries were captured at different times as well as with different contents due to the individualized needs of each patient. Most of the work focused on the provision of deep neural networks with attention mechanisms that generate complete patient representations that can be readily used for downstream prediction tasks. However, such approaches fail to take patient similarity into account, which is generally used in clinical reasoning scenarios. This study presents a new Contrastive Graph Similarity Network for similarity calculation among patients in large EHR datasets. Particularly, we apply graph-based similarity analysis that explicitly extracts the clinical characteristics of each patient and aggregates the information of similar patients to generate rich patient representations. Experimental results on real-world EHR databases demonstrate the effectiveness and superiority of our method for the task of vital signs imputation and ICU patient deterioration prediction.

摘要

近年来,使用电子健康记录(EHR)的预测分析已成为一个活跃的研究领域,尤其是随着深度学习技术的发展。深度学习中一种流行的EHR数据分析范式是患者表示学习,其目的是学习个体患者的浓缩数学表示。然而,EHR数据通常本质上是不规则的,即由于每个患者的个性化需求,数据条目是在不同时间以及具有不同内容的情况下捕获的。大多数工作集中在为深度神经网络提供注意力机制,以生成可直接用于下游预测任务的完整患者表示。然而,这种方法没有考虑患者相似性,而患者相似性通常用于临床推理场景。本研究提出了一种新的对比图相似性网络,用于大型EHR数据集中患者之间的相似性计算。特别是,我们应用基于图的相似性分析,明确提取每个患者的临床特征,并汇总相似患者的信息以生成丰富的患者表示。在真实世界EHR数据库上的实验结果证明了我们的方法在生命体征插补和ICU患者病情恶化预测任务中的有效性和优越性。

相似文献

1
Fine-grained Patient Similarity Measuring using Contrastive Graph Similarity Networks.使用对比图相似性网络的细粒度患者相似性测量
Proc (IEEE Int Conf Healthc Inform). 2024 Jun;2024:1-10. doi: 10.1109/ichi61247.2024.00009. Epub 2024 Aug 22.
4
Deep graph clustering via aligning representation learning.通过对齐表示学习进行深度图聚类
Neural Netw. 2025 Mar;183:106927. doi: 10.1016/j.neunet.2024.106927. Epub 2024 Nov 22.
6
Dual Contrastive Learning Network for Graph Clustering.用于图聚类的双对比学习网络。
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):10846-10856. doi: 10.1109/TNNLS.2023.3244397. Epub 2024 Aug 5.
9
Multi-task heterogeneous graph learning on electronic health records.电子健康记录上的多任务异质图学习。
Neural Netw. 2024 Dec;180:106644. doi: 10.1016/j.neunet.2024.106644. Epub 2024 Aug 22.

本文引用的文献

1
Graph contrastive learning with implicit augmentations.基于隐式增强的图对比学习。
Neural Netw. 2023 Jun;163:156-164. doi: 10.1016/j.neunet.2023.04.001. Epub 2023 Apr 5.
7
Adversarial Recurrent Time Series Imputation.对抗循环时间序列插补
IEEE Trans Neural Netw Learn Syst. 2023 Apr;34(4):1639-1650. doi: 10.1109/TNNLS.2020.3010524. Epub 2023 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验