Suppr超能文献

利用机器学习方法在黑色素瘤诊断和预后方面的最新进展。

Recent Advances in Melanoma Diagnosis and Prognosis Using Machine Learning Methods.

机构信息

Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.

Vanderbilt University School of Medicine, Nashville, TN, USA.

出版信息

Curr Oncol Rep. 2023 Jun;25(6):635-645. doi: 10.1007/s11912-023-01407-3. Epub 2023 Mar 31.

Abstract

PURPOSE OF REVIEW

The purpose was to summarize the current role and state of artificial intelligence and machine learning in the diagnosis and management of melanoma.

RECENT FINDINGS

Deep learning algorithms can identify melanoma from clinical, dermoscopic, and whole slide pathology images with increasing accuracy. Efforts to provide more granular annotation to datasets and to identify new predictors are ongoing. There have been many incremental advances in both melanoma diagnostics and prognostic tools using artificial intelligence and machine learning. Higher quality input data will further improve these models' capabilities.

摘要

目的综述

目的是总结人工智能和机器学习在黑色素瘤诊断和管理中的作用和现状。

最近的发现

深度学习算法可以从临床、皮肤镜和全切片病理图像中越来越准确地识别黑色素瘤。正在努力对数据集进行更精细的注释,并确定新的预测因子。在使用人工智能和机器学习进行黑色素瘤诊断和预后工具方面已经取得了许多渐进式进展。更高质量的输入数据将进一步提高这些模型的能力。

相似文献

引用本文的文献

本文引用的文献

1
BCN20000: Dermoscopic Lesions in the Wild.BCN20000:野外的皮肤镜病变。
Sci Data. 2024 Jun 17;11(1):641. doi: 10.1038/s41597-024-03387-w.
3
Artificial intelligence in the detection of skin cancer.人工智能在皮肤癌检测中的应用。
J Am Acad Dermatol. 2022 Dec;87(6):1336-1342. doi: 10.1016/j.jaad.2022.08.028. Epub 2022 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验