Suppr超能文献

利用机器学习和深度学习从皮肤镜图像诊断黑色素瘤及判断预后:一项系统文献综述

Diagnosis and prognosis of melanoma from dermoscopy images using machine learning and deep learning: a systematic literature review.

作者信息

Naseri Hoda, Safaei Ali A

机构信息

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

出版信息

BMC Cancer. 2025 Jan 13;25(1):75. doi: 10.1186/s12885-024-13423-y.

Abstract

BACKGROUND

Melanoma is a highly aggressive skin cancer, where early and accurate diagnosis is crucial to improve patient outcomes. Dermoscopy, a non-invasive imaging technique, aids in melanoma detection but can be limited by subjective interpretation. Recently, machine learning and deep learning techniques have shown promise in enhancing diagnostic precision by automating the analysis of dermoscopy images.

METHODS

This systematic review examines recent advancements in machine learning (ML) and deep learning (DL) applications for melanoma diagnosis and prognosis using dermoscopy images. We conducted a thorough search across multiple databases, ultimately reviewing 34 studies published between 2016 and 2024. The review covers a range of model architectures, including DenseNet and ResNet, and discusses datasets, methodologies, and evaluation metrics used to validate model performance.

RESULTS

Our results highlight that certain deep learning architectures, such as DenseNet and DCNN demonstrated outstanding performance, achieving over 95% accuracy on the HAM10000, ISIC and other datasets for melanoma detection from dermoscopy images. The review provides insights into the strengths, limitations, and future research directions of machine learning and deep learning methods in melanoma diagnosis and prognosis. It emphasizes the challenges related to data diversity, model interpretability, and computational resource requirements.

CONCLUSION

This review underscores the potential of machine learning and deep learning methods to transform melanoma diagnosis through improved diagnostic accuracy and efficiency. Future research should focus on creating accessible, large datasets and enhancing model interpretability to increase clinical applicability. By addressing these areas, machine learning and deep learning models could play a central role in advancing melanoma diagnosis and patient care.

摘要

背景

黑色素瘤是一种侵袭性很强的皮肤癌,早期准确诊断对于改善患者预后至关重要。皮肤镜检查是一种非侵入性成像技术,有助于黑色素瘤的检测,但可能受到主观解读的限制。最近,机器学习和深度学习技术在通过自动分析皮肤镜图像提高诊断精度方面显示出了前景。

方法

本系统综述研究了使用皮肤镜图像进行黑色素瘤诊断和预后的机器学习(ML)和深度学习(DL)应用的最新进展。我们在多个数据库中进行了全面搜索,最终回顾了2016年至2024年间发表的34项研究。该综述涵盖了一系列模型架构,包括DenseNet和ResNet,并讨论了用于验证模型性能的数据集、方法和评估指标。

结果

我们的结果突出表明,某些深度学习架构,如DenseNet和DCNN表现出色,在HAM10000、ISIC和其他用于从皮肤镜图像中检测黑色素瘤的数据集上实现了超过95%的准确率。该综述深入探讨了机器学习和深度学习方法在黑色素瘤诊断和预后方面的优势、局限性和未来研究方向。它强调了与数据多样性、模型可解释性和计算资源需求相关的挑战。

结论

本综述强调了机器学习和深度学习方法通过提高诊断准确性和效率来改变黑色素瘤诊断的潜力。未来的研究应专注于创建可访问的大型数据集并增强模型可解释性,以提高临床适用性。通过解决这些领域的问题,机器学习和深度学习模型可以在推进黑色素瘤诊断和患者护理方面发挥核心作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4d/11727731/2f74e03e899c/12885_2024_13423_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验