Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund, Germany.
Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, 33098 Paderborn, Germany.
Phys Rev Lett. 2023 Mar 17;130(11):113601. doi: 10.1103/PhysRevLett.130.113601.
Long-term quantum coherence constitutes one of the main challenges when engineering quantum devices. However, easily accessible means to quantify complex decoherence mechanisms are not readily available, nor are sufficiently stable systems. We harness novel phase-space methods-expressed through non-Gaussian convolutions of highly singular Glauber-Sudarshan quasiprobabilities-to dynamically monitor quantum coherence in polariton condensates with significantly enhanced coherence times. Via intensity- and time-resolved reconstructions of such phase-space functions from homodyne detection data, we probe the systems' resourcefulness for quantum information processing up to the nanosecond regime. Our experimental findings are confirmed through numerical simulations, for which we develop an approach that renders established algorithms compatible with our methodology. In contrast to commonly applied phase-space functions, our distributions can be directly sampled from measured data, including uncertainties, and yield a simple operational measure of quantum coherence via the distribution's variance in phase. Therefore, we present a broadly applicable framework and a platform to explore time-dependent quantum phenomena and resources.
长期量子相干性是工程量子器件面临的主要挑战之一。然而,易于获取的量化复杂退相干机制的方法并不容易获得,也没有足够稳定的系统。我们利用新颖的相空间方法——通过高度奇异的 Glauber-Sudarshan 拟概率的非高斯卷积来表达——动态监测极化激元凝聚体中的量子相干性,其相干时间显著延长。通过从同频探测数据中对这种相空间函数进行强度和时间分辨的重建,我们探测了系统在纳秒范围内进行量子信息处理的能力。我们的实验结果通过数值模拟得到了证实,为此我们开发了一种方法,使现有的算法与我们的方法兼容。与常用的相空间函数不同,我们的分布可以直接从测量数据(包括不确定性)中进行抽样,并通过分布在相位上的方差来获得量子相干性的简单操作度量。因此,我们提出了一个广泛适用的框架和一个平台来探索时变量子现象和资源。