Schäfer Christian
Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden.
J Phys Chem Lett. 2022 Aug 4;13(30):6905-6911. doi: 10.1021/acs.jpclett.2c01169. Epub 2022 Jul 22.
The coherent interaction of a large collection of molecules with a common photonic mode results in strong light-matter coupling, a feature that has proven highly beneficial for chemistry and has introduced the research topics polaritonic and QED chemistry. Here, we demonstrate an embedding approach to capture the collective nature while retaining the full representation of single molecules─an approach ideal for polaritonic chemistry. The accuracy of the embedding radiation-reaction ansatz is demonstrated for time-dependent density-functional theory. Then, by virtue of a simple proton-tunneling model, we illustrate that the influence of collective strong coupling on chemical reactions features a nontrivial dependence on the number of emitters and can alternate between strong catalyzing and an inhibiting effect. Bridging classical electrodynamics, quantum optical descriptions, and the description of realistic molecules, this work can serve as a guiding light for future developments and investigations in the quickly growing fields of QED chemistry and QED material design.
大量分子与共同光子模式的相干相互作用会导致强光-物质耦合,这一特性已被证明对化学极为有益,并引入了极化激元化学和量子电动力学(QED)化学等研究主题。在此,我们展示了一种嵌入方法,既能捕捉集体性质,又能保留单分子的完整表示——这是极化激元化学的理想方法。嵌入辐射反应假设的准确性在含时密度泛函理论中得到了证明。然后,借助一个简单的质子隧穿模型,我们表明集体强耦合对化学反应的影响具有对发射体数量的非平凡依赖性,并且可以在强催化作用和抑制作用之间交替。这项工作将经典电动力学、量子光学描述与实际分子描述联系起来,可为QED化学和QED材料设计等快速发展领域的未来发展和研究提供指导。