School of Physics and Astronomy, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
School of Engineering, Cardiff University, Queen's Buildings, Cardiff, CF24 3AA, UK.
Sci Rep. 2023 Mar 31;13(1):5316. doi: 10.1038/s41598-023-32359-0.
Coupling light from a point source to a propagating mode is an important problem in nano-photonics and is essential for many applications in quantum optics. Circular "bullseye" cavities, consisting of concentric rings of alternating refractive index, are a promising technology that can achieve near-unity coupling into a first lens. Here we design a bullseye structure suitable for enhancing the emission from dye molecules, 2D materials and nano-diamonds positioned on the surface of these cavities. A periodic design of cavity, meeting the Bragg scattering condition, achieves a Purcell factor of 22.5 and collection efficiency of 80%. We also tackle the more challenging task of designing a cavity for coupling to a low numerical aperture fibre in the near field. Finally, using an iterative procedure, we study how the collection efficiency varies with apodised (non-periodic) rings.
将点光源与传播模式耦合是纳米光子学中的一个重要问题,对于量子光学中的许多应用至关重要。由交替折射率的同心环组成的圆形“靶心”腔是一种很有前途的技术,它可以实现近乎完美的耦合到第一个透镜中。在这里,我们设计了一种适用于增强位于这些腔表面的染料分子、二维材料和纳米金刚石的发射的靶心结构。满足布拉格散射条件的腔的周期性设计实现了 22.5 的普塞尔因子和 80%的收集效率。我们还解决了更具挑战性的任务,即设计用于近场耦合到低数值孔径光纤的腔。最后,使用迭代过程,我们研究了收集效率如何随变迹(非周期性)环而变化。