Suppr超能文献

基于胶体量子点和背激发纳米天线中SiV中心的室温光纤耦合单光子源

Room-Temperature Fiber-Coupled Single-Photon Sources based on Colloidal Quantum Dots and SiV Centers in Back-Excited Nanoantennas.

作者信息

Lubotzky Boaz, Nazarov Alexander, Abudayyeh Hamza, Antoniuk Lukas, Lettner Niklas, Agafonov Viatcheslav, Bennett Anastasia V, Majumder Somak, Chandrasekaran Vigneshwaran, Bowes Eric G, Htoon Han, Hollingsworth Jennifer A, Kubanek Alexander, Rapaport Ronen

机构信息

Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

出版信息

Nano Lett. 2024 Jan 17;24(2):640-648. doi: 10.1021/acs.nanolett.3c03672. Epub 2024 Jan 2.

Abstract

We demonstrate an important step toward on-chip integration of single-photon sources at room temperature. Excellent photon directionality is achieved with a hybrid metal-dielectric bullseye antenna, while back-excitation is permitted by placement of the emitter in a subwavelength hole positioned at its center. The unique design enables a direct back-excitation and very efficient front coupling of emission either to a low numerical aperture (NA) optics or directly to an optical fiber. To show the versatility of the concept, we fabricate devices containing either a colloidal quantum dot or a nanodiamond containing silicon-vacancy centers, which are accurately positioned using two different nanopositioning methods. Both of these back-excited devices display front collection efficiencies of ∼70% at NAs as low as 0.5. The combination of back-excitation with forward directionality enables direct coupling of the emitted photons into a proximal optical fiber without any coupling optics, thereby facilitating and simplifying future integration.

摘要

我们展示了朝着室温下单光子源的片上集成迈出的重要一步。通过混合金属-电介质靶心天线实现了出色的光子方向性,而通过将发射器放置在位于其中心的亚波长孔中允许背向激发。这种独特的设计能够实现直接背向激发以及将发射光非常高效地从前部耦合到低数值孔径(NA)光学器件或直接耦合到光纤。为了展示该概念的通用性,我们制造了包含胶体量子点或含有硅空位中心的纳米金刚石的器件,使用两种不同的纳米定位方法对它们进行了精确放置。这两种背向激发的器件在低至0.5的数值孔径下均显示出约70%的前向收集效率。背向激发与前向方向性的结合使得发射的光子能够直接耦合到近端光纤中,而无需任何耦合光学器件,从而便于并简化了未来的集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c30e/11139382/d952a6f84481/nl3c03672_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验