Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
Anhui Medical University, Hefei 230032, China.
Sensors (Basel). 2024 Sep 25;24(19):6203. doi: 10.3390/s24196203.
This study included 468 patients and aimed to use multimodal ultrasound radiomic technology to predict the malignancy of TI-RADS 4-5 thyroid nodules. First, radiomic features are extracted from conventional two-dimensional ultrasound (transverse ultrasound and longitudinal ultrasound), strain elastography (SE), and shear-wave-imaging (SWE) images. Next, the least absolute shrinkage and selection operator (LASSO) is used to screen out features related to malignant tumors. Finally, a support vector machine (SVM) is used to predict the malignancy of thyroid nodules. The Shapley additive explanation (SHAP) method was used to intuitively analyze the specific contributions of radiomic features to the model's prediction. Our proposed model has AUCs of 0.971 and 0.856 in the training and testing sets, respectively. Our proposed model has a higher prediction accuracy compared to those of models with other modal combinations. In the external validation set, the AUC of the model is 0.779, which proves that the model has good generalization ability. Moreover, SHAP analysis was used to examine the overall impacts of various radiomic features on model predictions and local explanations for individual patient evaluations. Our proposed multimodal ultrasound radiomic model can effectively integrate different data collected using multiple ultrasound sensors and has good diagnostic performance for TI-RADS 4-5 thyroid nodules.
这项研究纳入了 468 名患者,旨在利用多模态超声放射组学技术预测 TI-RADS 4-5 甲状腺结节的恶性程度。首先,从常规二维超声(横切面超声和纵切面超声)、应变弹性成像(SE)和剪切波弹性成像(SWE)图像中提取放射组学特征。接下来,使用最小绝对收缩和选择算子(LASSO)筛选出与恶性肿瘤相关的特征。最后,使用支持向量机(SVM)预测甲状腺结节的恶性程度。使用 Shapley 加法解释(SHAP)方法直观地分析放射组学特征对模型预测的具体贡献。我们提出的模型在训练集和测试集中的 AUC 分别为 0.971 和 0.856。与具有其他模态组合的模型相比,我们提出的模型具有更高的预测准确性。在外部验证集中,模型的 AUC 为 0.779,证明了模型具有良好的泛化能力。此外,还使用 SHAP 分析来检查各种放射组学特征对模型预测的整体影响以及对个别患者评估的局部解释。我们提出的多模态超声放射组学模型可以有效地整合使用多个超声传感器收集的不同数据,对 TI-RADS 4-5 甲状腺结节具有良好的诊断性能。