Aix Marseille Univ, IRD, INSERM, SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, Marseille, France.
Aix Marseille Univ, IRD, INSERM, SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, Marseille, France.
Epidemics. 2023 Jun;43:100682. doi: 10.1016/j.epidem.2023.100682. Epub 2023 Mar 27.
Targeting interventions where most needed and effective is crucial for public health. Malaria control and elimination strategies increasingly rely on stratification to guide surveillance, to allocate vector control campaigns, and to prioritize access to community-based early diagnosis and treatment (EDT). We developed an original approach of dynamic clustering to improve local discrimination between heterogeneous malaria transmission settings.
We analysed weekly malaria incidence records obtained from community-based EDT (malaria posts) in Karen/Kayin state, Myanmar. We smoothed longitudinal incidence series over multiple seasons using functional transformation. We regrouped village incidence series into clusters using a dynamic time warping clustering and compared them to the standard, 5-category annual incidence standard stratification.
We included 1115 villages from 2016 to 2020. We identified eleven P. falciparum and P. vivax incidence clusters which differed by amplitude, trends and seasonality. Specifically the 124 villages classified as "high transmission area" in the standard P. falciparum stratification belonged to the 11 distinct groups when accounting to inter-annual trends and intra-annual variations. Likewise for P. vivax, 399 "high transmission" villages actually corresponded to the 11 distinct dynamics.
Our temporal dynamic clustering methodology is easy to implement and extracts more information than standard malaria stratification. Our method exploits longitudinal surveillance data to distinguish local dynamics, such as increasing inter-annual trends or seasonal differences, providing key information for decision-making. It is relevant to malaria strategies in other settings and to other diseases, especially when many countries deploy health information systems and collect increasing amounts of health outcome data.
The Bill & Melinda Gates Foundation, The Global Fund against AIDS, Tuberculosis and Malaria (the Regional Artemisinin Initiative) and the Wellcome Trust funded the METF program.
针对最需要和最有效的干预措施是公共卫生的关键。疟疾控制和消除策略越来越依赖分层来指导监测,分配病媒控制运动,并优先考虑获得以社区为基础的早期诊断和治疗(EDT)。我们开发了一种原始的动态聚类方法,以提高在异质疟疾传播环境之间进行局部区分的能力。
我们分析了来自缅甸克伦邦/克耶邦社区为基础的 ED(疟疾哨点)的每周疟疾发病率记录。我们使用功能变换对多个季节的纵向发病率系列进行平滑处理。我们使用动态时间 warping 聚类将村庄发病率系列重新分组为聚类,并将它们与标准的 5 类年度发病率标准分层进行比较。
我们纳入了 2016 年至 2020 年的 1115 个村庄。我们确定了 11 个疟原虫和疟原虫 vivax 的发病率聚类,它们在振幅、趋势和季节性方面有所不同。具体来说,在标准疟原虫分层中被归类为“高传播区”的 124 个村庄,在考虑到年度趋势和年度内变化时,实际上属于 11 个不同的组。同样,对于疟原虫 vivax,399 个“高传播”村庄实际上对应于 11 个不同的动态。
我们的时间动态聚类方法易于实施,并比标准疟疾分层提取更多信息。我们的方法利用纵向监测数据来区分当地动态,例如增加年度趋势或季节性差异,为决策提供关键信息。它与其他环境中的疟疾策略以及其他疾病相关,特别是当许多国家部署卫生信息系统并收集越来越多的卫生结果数据时。
比尔及梅琳达·盖茨基金会、全球抗击艾滋病、结核病和疟疾基金(区域青蒿素倡议)和惠康信托基金会资助了 METF 计划。