文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于跨域知识转移的并行级联多尺度注意力网络用于投影磁粒子成像中的有限视图重建

Cross-domain knowledge transfer based parallel-cascaded multi-scale attention network for limited view reconstruction in projection magnetic particle imaging.

作者信息

Wu Xiangjun, Gao Pengli, Zhang Peng, Shang Yaxin, He Bingxi, Zhang Liwen, Jiang Jingying, Hui Hui, Tian Jie

机构信息

School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China.

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China.

出版信息

Comput Biol Med. 2023 May;158:106809. doi: 10.1016/j.compbiomed.2023.106809. Epub 2023 Mar 28.


DOI:10.1016/j.compbiomed.2023.106809
PMID:37004433
Abstract

Projection magnetic particle imaging (MPI) can significantly improve the temporal resolution of three-dimensional (3D) imaging compared to that using traditional point by point scanning. However, the dense view of projections required for tomographic reconstruction limits the scope of temporal resolution optimization. The solution to this problem in computed tomography (CT) is using limited view projections (sparse view or limited angle) for reconstruction, which can be divided into: completing the limited view sinogram and image post-processing for streaking artifacts caused by insufficient projections. Benefiting from large-scale CT datasets, both categories of deep learning-based methods have achieved tremendous progress; yet, there is a data scarcity limitation in MPI. We propose a cross-domain knowledge transfer learning strategy that can transfer the prior knowledge of the limited view learned by the model in CT to MPI, which can help reduce the network requirements for real MPI data. In addition, the size of the imaging target affects the scale of the streaking artifacts caused by insufficient projections. Therefore, we propose a parallel-cascaded multi-scale attention module that allows the network to adaptively identify streaking artifacts at different scales. The proposed method was evaluated on real phantom and in vivo mouse data, and it significantly outperformed several advanced limited view methods. The streaking artifacts caused by an insufficient number of projections can be overcome using the proposed method.

摘要

与传统的逐点扫描相比,投影式磁粒子成像(MPI)能够显著提高三维(3D)成像的时间分辨率。然而,断层重建所需的密集投影视图限制了时间分辨率优化的范围。计算机断层扫描(CT)中解决此问题的方法是使用有限视图投影(稀疏视图或有限角度)进行重建,这可分为:完成有限视图正弦图以及对因投影不足导致的条纹伪影进行图像后处理。受益于大规模CT数据集,这两类基于深度学习的方法都取得了巨大进展;然而,MPI存在数据稀缺的限制。我们提出了一种跨域知识转移学习策略,该策略可以将模型在CT中学习到的有限视图先验知识转移到MPI中,这有助于降低网络对真实MPI数据的需求。此外,成像目标的大小会影响因投影不足导致的条纹伪影的规模。因此,我们提出了一种并行级联多尺度注意力模块,使网络能够自适应地识别不同尺度的条纹伪影。所提出的方法在真实体模和体内小鼠数据上进行了评估,并且显著优于几种先进的有限视图方法。使用所提出的方法可以克服因投影数量不足而导致的条纹伪影。

相似文献

[1]
Cross-domain knowledge transfer based parallel-cascaded multi-scale attention network for limited view reconstruction in projection magnetic particle imaging.

Comput Biol Med. 2023-5

[2]
PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging.

Med Phys. 2023-4

[3]
A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.

Comput Methods Programs Biomed. 2022-11

[4]
Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer.

IEEE Trans Med Imaging. 2021-7

[5]
LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction.

Phys Med Biol. 2022-7-19

[6]
A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation.

Med Phys. 2022-12

[7]
Promising Generative Adversarial Network Based Sinogram Inpainting Method for Ultra-Limited-Angle Computed Tomography Imaging.

Sensors (Basel). 2019-9-12

[8]
Sparse-view CT reconstruction based on multi-level wavelet convolution neural network.

Phys Med. 2020-12

[9]
Sparsier2Sparse: Self-supervised convolutional neural network-based streak artifacts reduction in sparse-view CT images.

Med Phys. 2023-12

[10]
Hierarchical decomposed dual-domain deep learning for sparse-view CT reconstruction.

Phys Med Biol. 2024-4-3

引用本文的文献

[1]
Machine Learning and Deep Learning Applications in Magnetic Particle Imaging.

J Magn Reson Imaging. 2025-1

[2]
Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging.

Biology (Basel). 2023-12-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索