文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有通道注意力机制的CNN与Transformer融合网络用于磁粒子成像中的精确肿瘤成像

Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging.

作者信息

Shang Yaxin, Liu Jie, Wang Yueqi

机构信息

School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.

CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, China.

出版信息

Biology (Basel). 2023 Dec 19;13(1):0. doi: 10.3390/biology13010002.


DOI:10.3390/biology13010002
PMID:38275723
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11154287/
Abstract

Magnetic Particle Imaging (MPI) is an emerging molecular imaging technique. However, since X-space reconstruction ignores system properties, it can lead to blurring of the reconstructed image, posing challenges for accurate quantification. To address this issue, we propose the use of deep learning to remove the blurry artifacts; (2) Methods: Our network architecture consists of a combination of Convolutional Neural Network (CNN) and Transformer. The CNN utilizes convolutional layers to automatically extract pixel-level local features and reduces the size of feature maps through pooling layers, effectively capturing local information within the images. The Transformer module is responsible for extracting contextual features from the images and efficiently capturing long-range dependencies, enabling a more effective modeling of global features in the images. By combining the features extracted by both CNN and Transformer, we capture both global and local features simultaneously, thereby improving the quality of reconstructed images; (3) Results: Experimental results demonstrate that the network effectively removes blurry artifacts from the images, and it exhibits high accuracy in precise tumor quantification. The proposed method shows superior performance over the state-of-the-art methods; (4) Conclusions: This bears significant implications for the image quality improvement and clinical application of MPI technology.

摘要

磁粒子成像(MPI)是一种新兴的分子成像技术。然而,由于X空间重建忽略了系统特性,可能会导致重建图像模糊,给准确量化带来挑战。为了解决这个问题,我们建议使用深度学习来去除模糊伪影;(2)方法:我们的网络架构由卷积神经网络(CNN)和Transformer相结合组成。CNN利用卷积层自动提取像素级局部特征,并通过池化层减小特征图的大小,有效地捕获图像中的局部信息。Transformer模块负责从图像中提取上下文特征并有效捕获长程依赖关系,从而能够对图像中的全局特征进行更有效的建模。通过结合CNN和Transformer提取的特征,我们同时捕获全局和局部特征,从而提高重建图像的质量;(3)结果:实验结果表明,该网络有效地去除了图像中的模糊伪影,并且在精确的肿瘤量化方面表现出高精度。所提出的方法比现有方法表现出更好的性能;(4)结论:这对MPI技术的图像质量提升和临床应用具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/651534555b83/biology-13-00002-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/c4f752c2322b/biology-13-00002-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/1e7f4eed4b73/biology-13-00002-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/0706ffb4553a/biology-13-00002-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/088cce503603/biology-13-00002-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/df93a6410b06/biology-13-00002-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/9fd60ed47ab2/biology-13-00002-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/ad197ed38b2a/biology-13-00002-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/d237940be1d7/biology-13-00002-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/651534555b83/biology-13-00002-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/c4f752c2322b/biology-13-00002-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/1e7f4eed4b73/biology-13-00002-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/0706ffb4553a/biology-13-00002-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/088cce503603/biology-13-00002-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/df93a6410b06/biology-13-00002-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/9fd60ed47ab2/biology-13-00002-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/ad197ed38b2a/biology-13-00002-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/d237940be1d7/biology-13-00002-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d71b/11154287/651534555b83/biology-13-00002-g009.jpg

相似文献

[1]
Fusion Networks of CNN and Transformer with Channel Attention for Accurate Tumor Imaging in Magnetic Particle Imaging.

Biology (Basel). 2023-12-19

[2]
CVTrack: Combined Convolutional Neural Network and Vision Transformer Fusion Model for Visual Tracking.

Sensors (Basel). 2024-1-3

[3]
ETU-Net: edge enhancement-guided U-Net with transformer for skin lesion segmentation.

Phys Med Biol. 2023-12-22

[4]
TPFR-Net: U-shaped model for lung nodule segmentation based on transformer pooling and dual-attention feature reorganization.

Med Biol Eng Comput. 2023-8

[5]
Microscopic Hyperspectral Image Classification Based on Fusion Transformer With Parallel CNN.

IEEE J Biomed Health Inform. 2023-6

[6]
Deep magnetic resonance fingerprinting based on Local and Global Vision Transformer.

Med Image Anal. 2024-7

[7]
Dual encoder network with transformer-CNN for multi-organ segmentation.

Med Biol Eng Comput. 2023-3

[8]
Conv-Swinformer: Integration of CNN and shift window attention for Alzheimer's disease classification.

Comput Biol Med. 2023-9

[9]
A dual-branch and dual attention transformer and CNN hybrid network for ultrasound image segmentation.

Front Physiol. 2024-9-27

[10]
STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.

Med Phys. 2023-7

本文引用的文献

[1]
Content-Noise Feature Fusion Neural Network for Image Denoising in Magnetic Particle Imaging.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[2]
DEQ-MPI: A Deep Equilibrium Reconstruction With Learned Consistency for Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2024-1

[3]
Deep Penetrating and Sensitive Targeted Magnetic Particle Imaging and Photothermal Therapy of Early-Stage Glioblastoma Based on a Biomimetic Nanoplatform.

Adv Sci (Weinh). 2023-7

[4]
Modified Jiles-Atherton Model for Dynamic Magnetization in X-Space Magnetic Particle Imaging.

IEEE Trans Biomed Eng. 2023-7

[5]
Cross-domain knowledge transfer based parallel-cascaded multi-scale attention network for limited view reconstruction in projection magnetic particle imaging.

Comput Biol Med. 2023-5

[6]
Sensitive magnetic particle imaging of haemoglobin degradation for the detection and monitoring of intraplaque haemorrhage in atherosclerosis.

EBioMedicine. 2023-4

[7]
Weighted sum of harmonic signals for direct imaging in magnetic particle imaging.

Phys Med Biol. 2022-12-27

[8]
PGNet: Projection generative network for sparse-view reconstruction of projection-based magnetic particle imaging.

Med Phys. 2023-4

[9]
Recent developments of the reconstruction in magnetic particle imaging.

Vis Comput Ind Biomed Art. 2022-10-1

[10]
TranSMS: Transformers for Super-Resolution Calibration in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索