Shang Yaxin, Liu Jie, Wang Yueqi
School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, China.
Biology (Basel). 2023 Dec 19;13(1):0. doi: 10.3390/biology13010002.
Magnetic Particle Imaging (MPI) is an emerging molecular imaging technique. However, since X-space reconstruction ignores system properties, it can lead to blurring of the reconstructed image, posing challenges for accurate quantification. To address this issue, we propose the use of deep learning to remove the blurry artifacts; (2) Methods: Our network architecture consists of a combination of Convolutional Neural Network (CNN) and Transformer. The CNN utilizes convolutional layers to automatically extract pixel-level local features and reduces the size of feature maps through pooling layers, effectively capturing local information within the images. The Transformer module is responsible for extracting contextual features from the images and efficiently capturing long-range dependencies, enabling a more effective modeling of global features in the images. By combining the features extracted by both CNN and Transformer, we capture both global and local features simultaneously, thereby improving the quality of reconstructed images; (3) Results: Experimental results demonstrate that the network effectively removes blurry artifacts from the images, and it exhibits high accuracy in precise tumor quantification. The proposed method shows superior performance over the state-of-the-art methods; (4) Conclusions: This bears significant implications for the image quality improvement and clinical application of MPI technology.
磁粒子成像(MPI)是一种新兴的分子成像技术。然而,由于X空间重建忽略了系统特性,可能会导致重建图像模糊,给准确量化带来挑战。为了解决这个问题,我们建议使用深度学习来去除模糊伪影;(2)方法:我们的网络架构由卷积神经网络(CNN)和Transformer相结合组成。CNN利用卷积层自动提取像素级局部特征,并通过池化层减小特征图的大小,有效地捕获图像中的局部信息。Transformer模块负责从图像中提取上下文特征并有效捕获长程依赖关系,从而能够对图像中的全局特征进行更有效的建模。通过结合CNN和Transformer提取的特征,我们同时捕获全局和局部特征,从而提高重建图像的质量;(3)结果:实验结果表明,该网络有效地去除了图像中的模糊伪影,并且在精确的肿瘤量化方面表现出高精度。所提出的方法比现有方法表现出更好的性能;(4)结论:这对MPI技术的图像质量提升和临床应用具有重要意义。
Phys Med Biol. 2023-12-22
IEEE J Biomed Health Inform. 2023-6
Med Image Anal. 2024-7
Med Biol Eng Comput. 2023-3
Annu Int Conf IEEE Eng Med Biol Soc. 2023-7
IEEE Trans Med Imaging. 2024-1
IEEE Trans Biomed Eng. 2023-7
Phys Med Biol. 2022-12-27
Vis Comput Ind Biomed Art. 2022-10-1
IEEE Trans Med Imaging. 2022-12