Suppr超能文献

使用具有生物合理性的尖峰潜伏期代码和胜者全取抑制的高效多尺度视觉对象表示。

Efficient multi-scale representation of visual objects using a biologically plausible spike-latency code and winner-take-all inhibition.

机构信息

Department of Computer Science, University of California, Santa Barbara, CA, USA.

The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA.

出版信息

Biol Cybern. 2023 Apr;117(1-2):95-111. doi: 10.1007/s00422-023-00956-x. Epub 2023 Apr 1.

Abstract

Deep neural networks have surpassed human performance in key visual challenges such as object recognition, but require a large amount of energy, computation, and memory. In contrast, spiking neural networks (SNNs) have the potential to improve both the efficiency and biological plausibility of object recognition systems. Here we present a SNN model that uses spike-latency coding and winner-take-all inhibition (WTA-I) to efficiently represent visual stimuli using multi-scale parallel processing. Mimicking neuronal response properties in early visual cortex, images were preprocessed with three different spatial frequency (SF) channels, before they were fed to a layer of spiking neurons whose synaptic weights were updated using spike-timing-dependent-plasticity. We investigate how the quality of the represented objects changes under different SF bands and WTA-I schemes. We demonstrate that a network of 200 spiking neurons tuned to three SFs can efficiently represent objects with as little as 15 spikes per neuron. Studying how core object recognition may be implemented using biologically plausible learning rules in SNNs may not only further our understanding of the brain, but also lead to novel and efficient artificial vision systems.

摘要

深度神经网络在物体识别等关键视觉挑战中已经超越了人类的表现,但需要大量的能量、计算和内存。相比之下,尖峰神经网络(SNN)有可能提高物体识别系统的效率和生物合理性。在这里,我们提出了一种 SNN 模型,该模型使用尖峰潜伏期编码和胜者全取抑制(WTA-I),通过多尺度并行处理来有效地表示视觉刺激。通过模仿早期视觉皮层中的神经元反应特性,我们使用三个不同的空间频率(SF)通道对图像进行预处理,然后将其输入到一层尖峰神经元中,其突触权重使用尖峰时间依赖性可塑性进行更新。我们研究了在不同的 SF 带宽和 WTA-I 方案下,所表示的物体的质量如何变化。我们证明,一个由 200 个对三个 SF 进行调谐的尖峰神经元组成的网络可以用每个神经元少至 15 个尖峰有效地表示物体。研究如何使用 SNN 中的生物合理学习规则来实现核心物体识别,不仅可以进一步加深我们对大脑的理解,还可能导致新的、高效的人工视觉系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验