IEEE Trans Neural Netw Learn Syst. 2020 Dec;31(12):5300-5311. doi: 10.1109/TNNLS.2020.2966058. Epub 2020 Nov 30.
This article proposes an unsupervised address event representation (AER) object recognition approach. The proposed approach consists of a novel multiscale spatio-temporal feature (MuST) representation of input AER events and a spiking neural network (SNN) using spike-timing-dependent plasticity (STDP) for object recognition with MuST. MuST extracts the features contained in both the spatial and temporal information of AER event flow, and forms an informative and compact feature spike representation. We show not only how MuST exploits spikes to convey information more effectively, but also how it benefits the recognition using SNN. The recognition process is performed in an unsupervised manner, which does not need to specify the desired status of every single neuron of SNN, and thus can be flexibly applied in real-world recognition tasks. The experiments are performed on five AER datasets including a new one named GESTURE-DVS. Extensive experimental results show the effectiveness and advantages of the proposed approach.
本文提出了一种无监督的地址事件表示(AER)目标识别方法。所提出的方法包括一种新颖的多尺度时空特征(MuST)表示,用于输入 AER 事件,以及使用尖峰时间依赖可塑性(STDP)的尖峰神经网络(SNN)进行 MuST 目标识别。MuST 提取了 AER 事件流的空间和时间信息中包含的特征,并形成了一种信息丰富且紧凑的特征尖峰表示。我们不仅展示了 MuST 如何利用尖峰更有效地传递信息,还展示了它如何有助于使用 SNN 进行识别。识别过程是在无监督的方式下进行的,不需要指定 SNN 中每个神经元的期望状态,因此可以灵活地应用于现实世界的识别任务中。实验在包括一个名为 GESTURE-DVS 的新数据集在内的五个 AER 数据集上进行。广泛的实验结果表明了所提出方法的有效性和优势。