Suppr超能文献

一种使用混合启发式算法的工业物联网智能隐私保护框架。

A smart privacy preserving framework for industrial IoT using hybrid meta-heuristic algorithm.

机构信息

Department of Information Technology, School of Computing, MIT Art, Design and Technology University, Pune, 412201, India.

RBSPL, Bangalore, 560008, India.

出版信息

Sci Rep. 2023 Apr 1;13(1):5372. doi: 10.1038/s41598-023-32098-2.

Abstract

Industrial Internet of Things (IIoT) seeks more attention in attaining enormous opportunities in the field of Industry 4.0. But there exist severe challenges related to data privacy and security when processing the automatic and practical data collection and monitoring over industrial applications in IIoT. Traditional user authentication strategies in IIoT are affected by single factor authentication, which leads to poor adaptability along with the increasing users count and different user categories. For addressing such issue, this paper aims to implement the privacy preservation model in IIoT using the advancements of artificial intelligent techniques. The two major stages of the designed system are the sanitization and restoration of IIoT data. Data sanitization hides the sensitive information in IIoT for preventing it from leakage of information. Moreover, the designed sanitization procedure performs the optimal key generation by a new Grasshopper-Black Hole Optimization (G-BHO) algorithm. A multi-objective function involving the parameters like degree of modification, hiding rate, correlation coefficient between the actual data and restored data, and information preservation rate was derived and utilized for generating optimal key. The simulation result establishes the dominance of the proposed model over other state-of the-art models in terms of various performance metrics. In respect of privacy preservation, the proposed G-BHO algorithm has achieved 1%, 15.2%, 12.6%, and 1% enhanced result than JA, GWO, GOA, and BHO, respectively.

摘要

工业物联网 (IIoT) 在实现工业 4.0 领域的巨大机遇方面受到了更多关注。但是,在 IIoT 中处理工业应用的自动和实际数据收集和监控时,存在严重的数据隐私和安全挑战。传统的 IIoT 用户身份验证策略受到单因素身份验证的影响,这导致随着用户数量和不同用户类别增加,适应性较差。为了解决这个问题,本文旨在利用人工智能技术的进步在 IIoT 中实现隐私保护模型。设计系统的两个主要阶段是 IIoT 数据的净化和恢复。数据净化用于隐藏 IIoT 中的敏感信息,以防止信息泄露。此外,设计的净化过程通过新的 Grasshopper-Black Hole Optimization (G-BHO) 算法执行最佳密钥生成。导出并利用一个包含修改程度、隐藏率、实际数据和恢复后数据之间的相关系数以及信息保留率等参数的多目标函数来生成最佳密钥。仿真结果表明,在各种性能指标方面,所提出的模型均优于其他最先进的模型。在隐私保护方面,所提出的 G-BHO 算法分别比 JA、GWO、GOA 和 BHO 提高了 1%、15.2%、12.6%和 1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/794c/10067806/b7812efe3040/41598_2023_32098_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验