Suppr超能文献

基于TOF-MRA图像的影像组学列线图模型:一种预测微动脉瘤的新有效方法

Radiomics Nomogram Model Based on TOF-MRA Images: A New Effective Method for Predicting Microaneurysms.

作者信息

Kong Delian, Li Junrong, Lv Yingying, Wang Man, Li Shenghua, Qian Baoxin, Yu Yusheng

机构信息

Department of Neurology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People's Republic of China.

Department of Radiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People's Republic of China.

出版信息

Int J Gen Med. 2023 Mar 27;16:1091-1100. doi: 10.2147/IJGM.S397134. eCollection 2023.

Abstract

OBJECTIVE

To develop a radiomics nomogram model based on time-of-flight magnetic resonance angiography (TOF-MRA) images for preoperative prediction of true microaneurysms.

METHODS

118 patients with Intracranial Aneurysm Sac (40 positive and 78 negative) were enrolled and allocated to training and validation groups (8:2 ratio). Findings of clinical characteristics and MRA features were analyzed. A radiomics signature was built on the basis of reproducible features by using the least absolute shrinkage and selection operator (LASSO) regression algorithm in the training group. The radiomics nomogram model was constructed by combining clinical risk factors and radiomics signature. In order to compare the classification performance of clinical models, radiomics model and radiomics nomogram model, AUC was used to evaluate them. The performance of the radiomics nomogram model was evaluated by calibration curve and decision curve analysis.

RESULTS

Eleven features were selected to develop radiomics model with AUC of 0.875 (95% CI 0.78-0.97), sensitivity of 0.84, and specificity of 0.68. The radiomics model achieved a better diagnostic performance than the clinic model (AUC = 0.75, 95% CI: 0.53-0.97) and even radiologists. The radiomics nomogram model, which combines radiomics signature and clinical risk factors, is effective too (AUC = 0.913, 95% CI: 0.87-0.96). Furthermore, the decision curve analysis demonstrated significantly better net benefit in the radiomics nomogram model.

CONCLUSION

Radiomics features derived from TOF-MRA can reliably be used to build a radiomics nomogram model for effectively differentiating between pseudo microaneurysms and true microaneurysms, and it can provide an objective basis for the selection of clinical treatment plans.

摘要

目的

基于飞行时间磁共振血管造影(TOF-MRA)图像开发一种放射组学列线图模型,用于术前预测真性微动脉瘤。

方法

纳入118例颅内动脉瘤囊患者(40例阳性和78例阴性),并按8:2的比例分为训练组和验证组。分析临床特征和MRA特征的结果。在训练组中,通过使用最小绝对收缩和选择算子(LASSO)回归算法,基于可重复特征构建放射组学特征。通过结合临床危险因素和放射组学特征构建放射组学列线图模型。为了比较临床模型、放射组学模型和放射组学列线图模型的分类性能,使用AUC对它们进行评估。通过校准曲线和决策曲线分析评估放射组学列线图模型的性能。

结果

选择11个特征来开发放射组学模型,其AUC为0.875(95%CI 0.78-0.97),敏感性为0.84,特异性为0.68。放射组学模型的诊断性能优于临床模型(AUC = 0.75,95%CI:0.53-0.97),甚至优于放射科医生。结合放射组学特征和临床危险因素的放射组学列线图模型也有效(AUC = 0.913,95%CI:0.87-0.96)。此外,决策曲线分析表明放射组学列线图模型的净效益明显更好。

结论

从TOF-MRA获得放射组学特征可可靠地用于构建放射组学列线图模型,以有效区分假性微动脉瘤和真性微动脉瘤,并可为临床治疗方案的选择提供客观依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1380/10065425/252334a4620a/IJGM-16-1091-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验