Suppr超能文献

用于预测症状性颅内动脉粥样硬化狭窄患者卒中复发的影像组学列线图

Radiomics Nomogram for Predicting Stroke Recurrence in Symptomatic Intracranial Atherosclerotic Stenosis.

作者信息

Tang Min, Gao Jie, Ma Niane, Yan Xuejiao, Zhang Xin, Hu Jun, Zhuo Zhizheng, Shi Xiaorui, Li Ling, Lei Xiaoyan, Zhang Xiaoling

机构信息

Department of Magnetic Resonance Imaging (MRI), Shaanxi Provincial People's Hospital, Xi'an, China.

Department of Graduate, Xi'an Medical University, Xi'an, China.

出版信息

Front Neurosci. 2022 Apr 12;16:851353. doi: 10.3389/fnins.2022.851353. eCollection 2022.

Abstract

OBJECTIVE

To develop and validate a radiomics nomogram for predicting stroke recurrence in symptomatic intracranial atherosclerotic stenosis (SICAS).

METHODS

The data of 156 patients with SICAS were obtained from the hospital database. Those with and without stroke recurrence were identified. The 156 patients were separated into a training cohort ( = 110) and a validation cohort ( = 46). Baseline clinical data were collected from our medical records, and plaque radiological features were extracted from vascular wall high-resolution imaging (VW-HRMRI). The imaging sequences included 3D-T1WI-VISTA, T2WI, and 3D-T1WI-VISTA-enhanced imaging. Least absolute shrinkage and selection operator (LASSO) analysis were used to select the radiomics features associated with stroke recurrence. Then, multiple logistic regression analysis of clinical risk factors, radiological features, and radiomics signatures were performed, and a predictive nomogram was constructed to predict the probability of stroke recurrence in SICAS. The performance of the nomogram was evaluated.

RESULTS

Diabetes mellitus, plaque burden, and enhancement ratio were independent risk factors for stroke recurrence [odds ratio (OR) = 1.24, 95% confidence interval (CI): 1.04-3.79, = 0.018; OR = 1.76, per 10% increase, 95% CI, 1.28-2.41, < 0.001; and OR = 1.94, 95% CI: 1.27-3.09, < 0.001]. Five features of 3D-T1WI-VISTA, six features of T2WI, and nine features of 3D-T1WI-VISTA-enhanced images were associated with stroke recurrence. The radiomics signature in 3D-T1WI-VISTA-enhanced images was superior to the radiomics signature of the other two sequences for predicting stroke recurrence in both the training cohort [area under the curve (AUC), 0.790, 95% CI: 0.669-0.894] and the validation cohort (AUC, 0.779, 95% CI: 0.620-0.853). The combination of clinical risk factors, radiological features, and radiomics signature had the best predictive value (AUC, 0.899, 95% CI: 0.844-0.936 in the training cohort; AUC, 0.803, 95% CI: 0.761-0.897 in the validation cohort). The C-index of the nomogram was 0.880 (95% CI: 0.805-0.934) and 0.817 (95% CI: 0.795-0.948), respectively, in the training and validation cohorts. The decision curve analysis further confirmed that the radiomics nomogram had good clinical applicability with a net benefit of 0.458.

CONCLUSION

The radiomics features were helpful to predict stroke recurrence in patients with SICAS. The nomogram constructed by combining clinical high-risk factors, plaque radiological features, and radiomics features is a reliable tool for the individualized risk assessment of predicting the recurrence of SICAS stroke.

摘要

目的

开发并验证一种用于预测症状性颅内动脉粥样硬化性狭窄(SICAS)患者卒中复发的影像组学列线图。

方法

从医院数据库中获取156例SICAS患者的数据。确定有卒中复发和无卒中复发的患者。将156例患者分为训练队列(n = 110)和验证队列(n = 46)。从我们的病历中收集基线临床数据,并从血管壁高分辨率成像(VW-HRMRI)中提取斑块放射学特征。成像序列包括三维T1加权容积内插稳态进动序列(3D-T1WI-VISTA)、T2加权成像(T2WI)和3D-T1WI-VISTA增强成像。采用最小绝对收缩和选择算子(LASSO)分析来选择与卒中复发相关的影像组学特征。然后,对临床危险因素、放射学特征和影像组学特征进行多因素logistic回归分析,并构建预测列线图以预测SICAS患者卒中复发的概率。评估列线图的性能。

结果

糖尿病、斑块负荷和强化率是卒中复发的独立危险因素[比值比(OR)= 1.24,95%置信区间(CI):1.04 - 3.79,P = 0.018;OR = 1.76,每增加10%,95% CI:1.28 - 2.41,P < 0.001;OR = 1.94,95% CI:1.27 - 3.09,P < 0.001]。3D-T1WI-VISTA的5个特征、T2WI的6个特征和3D-T1WI-VISTA增强图像的9个特征与卒中复发相关。在训练队列[曲线下面积(AUC),0.790,95% CI:0.669 - 0.894]和验证队列(AUC,0.779,95% CI:0.620 - 0.853)中,3D-T1WI-VISTA增强图像中的影像组学特征在预测卒中复发方面优于其他两个序列的影像组学特征。临床危险因素、放射学特征和影像组学特征的组合具有最佳预测价值(训练队列中AUC为0.899,95% CI:0.844 - 0.936;验证队列中AUC为0.803,95% CI:0.761 - 0.897)。列线图在训练队列和验证队列中的C指数分别为0.880(95% CI:0.805 - 0.934)和0.817(95% CI:0.795 - 0.948)。决策曲线分析进一步证实影像组学列线图具有良好的临床适用性,净效益为0.458。

结论

影像组学特征有助于预测SICAS患者的卒中复发。结合临床高危因素、斑块放射学特征和影像组学特征构建的列线图是预测SICAS卒中复发个体化风险评估的可靠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d107/9039339/ea193a5e251a/fnins-16-851353-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验