Department of Medical Physics, University at Buffalo, State University of New York, Buffalo, New York, USA.
Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA.
J Neurointerv Surg. 2020 Apr;12(4):417-421. doi: 10.1136/neurintsurg-2019-015214. Epub 2019 Aug 23.
Angiographic parametric imaging (API) is an imaging method that uses digital subtraction angiography (DSA) to characterize contrast media dynamics throughout the vasculature. This requires manual placement of a region of interest over a lesion (eg, an aneurysm sac) by an operator.
The purpose of our work was to determine if a convolutional neural network (CNN) was able to identify and segment the intracranial aneurysm (IA) sac in a DSA and extract API radiomic features with minimal errors compared with human user results.
Three hundred and fifty angiographic images of IAs were retrospectively collected. The IAs and surrounding vasculature were manually contoured and the masks put to a CNN tasked with semantic segmentation. The CNN segmentations were assessed for accuracy using the Dice similarity coefficient (DSC) and Jaccard index (JI). Area under the receiver operating characteristic curve (AUROC) was computed. API features based on the CNN segmentation were compared with the human user results.
The mean JI was 0.823 (95% CI 0.783 to 0.863) for the IA and 0.737 (95% CI 0.682 to 0.792) for the vasculature. The mean DSC was 0.903 (95% CI 0.867 to 0.937) for the IA and 0.849 (95% CI 0.811 to 0.887) for the vasculature. The mean AUROC was 0.791 (95% CI 0.740 to 0.817) for the IA and 0.715 (95% CI 0.678 to 0.733) for the vasculature. All five API features measured inside the predicted masks were within 18% of those measured inside manually contoured masks.
CNN segmentation of IAs and surrounding vasculature from DSA images is non-inferior to manual contours of aneurysms and can be used in parametric imaging procedures.
血管造影参数成像(API)是一种使用数字减影血管造影(DSA)来描述整个脉管系统中对比剂动力学的成像方法。这需要操作员手动在病变(例如,动脉瘤囊)上放置感兴趣区域(ROI)。
我们的工作旨在确定卷积神经网络(CNN)是否能够识别和分割 DSA 中的颅内动脉瘤(IA)囊,并与人工用户结果相比,以最小的误差提取 API 放射组学特征。
回顾性收集了 350 个 IA 的血管造影图像。手动勾画 IA 和周围血管,并将蒙版输入到一个负责语义分割的 CNN 中。使用 Dice 相似系数(DSC)和 Jaccard 指数(JI)评估 CNN 分割的准确性。计算了接收器操作特征曲线下的面积(AUROC)。比较了基于 CNN 分割的 API 特征与人工用户结果。
IA 的平均 JI 为 0.823(95%置信区间 0.783 至 0.863),血管的平均 JI 为 0.737(95%置信区间 0.682 至 0.792)。IA 的平均 DSC 为 0.903(95%置信区间 0.867 至 0.937),血管的平均 DSC 为 0.849(95%置信区间 0.811 至 0.887)。IA 的平均 AUROC 为 0.791(95%置信区间 0.740 至 0.817),血管的平均 AUROC 为 0.715(95%置信区间 0.678 至 0.733)。在预测的蒙版内测量的所有五个 API 特征都在手动轮廓的蒙版内测量的特征的 18%以内。
从 DSA 图像中 CNN 分割 IA 和周围血管与手动勾画动脉瘤相当,可以用于参数成像程序。