Zhang Zhengwu, Wang Xiao, Kong Linglong, Zhu Hongtu
Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC.
Department of Statistics, Purdue University, West Lafayette, IN.
J Am Stat Assoc. 2022;117(539):1563-1578. doi: 10.1080/01621459.2020.1870984. Epub 2021 Mar 7.
This article develops a novel spatial quantile function-on-scalar regression model, which studies the conditional spatial distribution of a high-dimensional functional response given scalar predictors. With the strength of both quantile regression and copula modeling, we are able to explicitly characterize the conditional distribution of the functional or image response on the whole spatial domain. Our method provides a comprehensive understanding of the effect of scalar covariates on functional responses across different quantile levels and also gives a practical way to generate new images for given covariate values. Theoretically, we establish the minimax rates of convergence for estimating coefficient functions under both fixed and random designs. We further develop an efficient primal-dual algorithm to handle high-dimensional image data. Simulations and real data analysis are conducted to examine the finite-sample performance.
本文提出了一种新颖的空间分位数函数对标量回归模型,该模型研究给定标量预测变量时高维函数响应的条件空间分布。借助分位数回归和Copula建模的优势,我们能够明确刻画整个空间域上函数或图像响应的条件分布。我们的方法全面理解了标量协变量在不同分位数水平上对函数响应的影响,还给出了一种针对给定协变量值生成新图像的实用方法。从理论上讲,我们建立了固定设计和随机设计下估计系数函数的极小极大收敛速率。我们进一步开发了一种高效的原始对偶算法来处理高维图像数据。进行了模拟和实际数据分析以检验有限样本性能。