Suppr超能文献

高维空间标量上分位数函数回归

High-Dimensional Spatial Quantile Function-on-Scalar Regression.

作者信息

Zhang Zhengwu, Wang Xiao, Kong Linglong, Zhu Hongtu

机构信息

Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC.

Department of Statistics, Purdue University, West Lafayette, IN.

出版信息

J Am Stat Assoc. 2022;117(539):1563-1578. doi: 10.1080/01621459.2020.1870984. Epub 2021 Mar 7.

Abstract

This article develops a novel spatial quantile function-on-scalar regression model, which studies the conditional spatial distribution of a high-dimensional functional response given scalar predictors. With the strength of both quantile regression and copula modeling, we are able to explicitly characterize the conditional distribution of the functional or image response on the whole spatial domain. Our method provides a comprehensive understanding of the effect of scalar covariates on functional responses across different quantile levels and also gives a practical way to generate new images for given covariate values. Theoretically, we establish the minimax rates of convergence for estimating coefficient functions under both fixed and random designs. We further develop an efficient primal-dual algorithm to handle high-dimensional image data. Simulations and real data analysis are conducted to examine the finite-sample performance.

摘要

本文提出了一种新颖的空间分位数函数对标量回归模型,该模型研究给定标量预测变量时高维函数响应的条件空间分布。借助分位数回归和Copula建模的优势,我们能够明确刻画整个空间域上函数或图像响应的条件分布。我们的方法全面理解了标量协变量在不同分位数水平上对函数响应的影响,还给出了一种针对给定协变量值生成新图像的实用方法。从理论上讲,我们建立了固定设计和随机设计下估计系数函数的极小极大收敛速率。我们进一步开发了一种高效的原始对偶算法来处理高维图像数据。进行了模拟和实际数据分析以检验有限样本性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7317/10065478/fc2b92d13bba/nihms-1693032-f0001.jpg

相似文献

1
High-Dimensional Spatial Quantile Function-on-Scalar Regression.高维空间标量上分位数函数回归
J Am Stat Assoc. 2022;117(539):1563-1578. doi: 10.1080/01621459.2020.1870984. Epub 2021 Mar 7.
2
TENSOR QUANTILE REGRESSION WITH LOW-RANK TENSOR TRAIN ESTIMATION.基于低秩张量训练估计的张量分位数回归
Ann Appl Stat. 2024 Jun;18(2):1294-1318. doi: 10.1214/23-aoas1835. Epub 2024 Apr 5.
5
Robust scalar-on-function partial quantile regression.稳健的函数标量分位数回归
J Appl Stat. 2023 Apr 19;51(7):1359-1377. doi: 10.1080/02664763.2023.2202464. eCollection 2024.
8
Inference in Functional Linear Quantile Regression.函数线性分位数回归中的推断
J Multivar Anal. 2022 Jul;190. doi: 10.1016/j.jmva.2022.104985. Epub 2022 Mar 11.

引用本文的文献

1
Statistical Learning Methods for Neuroimaging Data Analysis with Applications.统计学习方法在神经影像学数据分析中的应用。
Annu Rev Biomed Data Sci. 2023 Aug 10;6:73-104. doi: 10.1146/annurev-biodatasci-020722-100353. Epub 2023 Apr 26.

本文引用的文献

2
Generalized Scalar-on-Image Regression Models via Total Variation.基于全变差的广义图像上标量回归模型
J Am Stat Assoc. 2017;112(519):1156-1168. doi: 10.1080/01621459.2016.1194846. Epub 2017 Apr 13.
4
Ageing, neurodegeneration and brain rejuvenation.衰老、神经退行性变与大脑年轻化
Nature. 2016 Nov 10;539(7628):180-186. doi: 10.1038/nature20411.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验