Suppr超能文献

机器人手术中的可重复性挑战。

Reproducibility challenges in robotic surgery.

作者信息

Faragasso Angela, Bonsignorio Fabio

机构信息

The Service Robotics Laboratory, Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.

ERA Chair in AI for Robotics, Head of AIFORS Lab FER, University of Zagreb, Zagreb, Croatia.

出版信息

Front Robot AI. 2023 Mar 15;10:1127972. doi: 10.3389/frobt.2023.1127972. eCollection 2023.

Abstract

Reproducibility of results is, in all research fields, the cornerstone of the scientific method and the minimum standard for assessing the value of scientific claims and conclusions drawn by other scientists. It requires a systematic approach and accurate description of the experimental procedure and data analysis, which allows other scientists to follow the steps described in the published work and obtain the "same results." In general and in different research contexts with "same" results, we mean different things. It can be almost identical measures in a fully deterministic experiment or "validation of a hypothesis" or statistically similar results in a non-deterministic context. Unfortunately, it has been shown by systematic meta-analysis studies that many findings in fields like psychology, sociology, medicine, and economics do not hold up when other researchers try to replicate them. Many scientific fields are experiencing what is generally referred to as a "reproducibility crisis," which undermines the trust in published results, imposes a thorough revision of the methodology in scientific research, and makes progress difficult. In general, the reproducibility of experiments is not a mainstream practice in artificial intelligence and robotics research. Surgical robotics is no exception. There is a need for developing new tools and putting in place a community effort to allow the transition to more reproducible research and hence faster progress in research. Reproducibility, replicability, and benchmarking (operational procedures for the assessment and comparison of research results) are made more complex for medical robotics and surgical systems, due to patenting, safety, and ethical issues. In this review paper, we selected 10 relevant published manuscripts on surgical robotics to analyze their clinical applicability and underline the problems related to reproducibility of the reported experiments, with the aim of finding possible solutions to the challenges that limit the translation of many scientific research studies into real-world applications and slow down research progress.

摘要

在所有研究领域,结果的可重复性是科学方法的基石,也是评估其他科学家得出的科学论断和结论价值的最低标准。它需要一种系统的方法以及对实验程序和数据分析的准确描述,这使得其他科学家能够遵循已发表作品中描述的步骤并获得“相同的结果”。一般来说,在不同的研究背景下,“相同”的结果有着不同的含义。它可以是在完全确定性实验中的几乎相同的测量结果,或者是“假设的验证”,又或者是在非确定性背景下统计上相似的结果。不幸的是,系统的元分析研究表明,当其他研究人员试图重复时,心理学、社会学、医学和经济学等领域的许多发现并不能成立。许多科学领域正在经历通常所说的“可重复性危机”,这削弱了对已发表结果的信任,促使对科学研究方法进行全面修订,并使进步变得困难。一般而言,实验的可重复性在人工智能和机器人研究中并非主流做法。手术机器人领域也不例外。需要开发新工具并通过社区努力来实现向更具可重复性的研究的转变,从而加快研究进展。由于专利、安全和伦理问题,对于医疗机器人和手术系统而言,可重复性、可复制性以及基准测试(评估和比较研究结果的操作程序)变得更加复杂。在这篇综述论文中,我们挑选了10篇关于手术机器人的相关已发表手稿,以分析它们的临床适用性,并强调与所报道实验的可重复性相关的问题,目的是找到可能的解决方案,应对那些限制许多科学研究转化为实际应用并减缓研究进展的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1500/10050429/23e77377d7e7/frobt-10-1127972-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验